SYNTHESIS OF RACEMIC 2-HYDROXY-4- AND 2-HYDROXY-5(HYDROXYMETHYL)CYCLOHEXANE NUCLEOSIDE ANALOGUES

Hubert Hěebabeckŷr,*, Milena Masojíd ${ }^{1,}$.
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague 6, Czech Republic; e-mail: ${ }^{1}$ hubert@uochb.cas.cz, ${ }^{2}$ holy@uochb.cas.cz

Received July 18, 2002
Accepted October 10, 2002

New racemic 2-hydroxy-4- and 2-hydroxy-5-(hydroxymethyl)cyclohexane analogues of adenine ($\mathbf{1 0 b}$ and 16b) and thymine nucleosides ($\mathbf{1 3 b}$ and 19b) were prepared by alkylation of 1,8 -diazabicyclo[5.4.0]undec-7-ene salt of adenine and/or thymine with 3-vinyl-7-oxabicyclo[4.1.0]heptane followed by cis hydroxylation with osmium(VIII) oxide and sodium chlorate, oxidation with sodium periodate, and borohydride reduction.
Keywords: Carbanucleosides; Carbocyclic nucleosides; Nucleosides; Cyclohexanes; Adenine; Thymine; Antivirals; Epoxides; NMR spectroscopy.

The search for new modified nucleosides as antivirals is still a promising field of research. As the hexitol nucleosides exhibit antiviral activity ${ }^{1}$, a variety of their carbocyclic congeners and the cyclohexene analogues was prepared ${ }^{2}$. Recently, a potent antiviral activity of such compounds was found ${ }^{2 j}, 2 \mathrm{k}$. Nucleic acids containing cyclohexene nucleosides were also synthesized ${ }^{3}$.

The present work is a part of the research programme ${ }^{4}$ aimed at the synthesis and of structure-antiviral activity study of carbocyclic nucleosides. This paper deals with the synthesis of racemic cyclohexane nucleosides bearing a hydroxymethyl group in the 3'- and/or 4'-position.

3-Vinyl-7-oxabicyclo[4.1.0]heptane (1; mixture of isomers) was chosen as a starting material for synthesis of the target compounds. Cyclohexane nucleosides were prepared by direct alkylation of a nucleobase nitrogen with cyclohexene oxide as described in the literature ${ }^{5,2 e}$ for analogous compounds. Treatment of adenine or thymine with 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) followed by 3-vinyl-7-oxabicyclo[4.1.0]heptane $\mathbf{1}$ in dimethylformamide at $125{ }^{\circ} \mathrm{C}$ afforded a mixture of racemic $\mathbf{2 a}$ (27\%) and 3a (10%) or $\mathbf{4 a}$ (21%) and $\mathbf{5 a}$ (12%) as main UV-absorbing products (Scheme 1). The other possible isomers were not detected in the reaction mixtures. The mixture of $\mathbf{2 a}$ and 3a was 0 -acetylated with acetic anhydride
and acetic acid in acetonitrile using 4-(dimethylamino)pyridine as a catalyst. Crystallization of the mixture of acetates $\mathbf{2 b}$ and $\mathbf{3 b}$ gave crystalline 2b. Acetate 3b was obtained by chromatography of mother liquors. Thymine nucleosides were separated, after benzoylation, by crystallization from propan-2-ol (compound 4b) and chromatography on a silica gel column (compound 5b). The free nucleosides $\mathbf{2 a}$ and $\mathbf{3 a}$ were obtained by methanolysis of $\mathbf{2 b}$ and $\mathbf{3 b}$ with methanolic ammonia, compounds $\mathbf{4 a}$ and $\mathbf{5 a}$ were prepared by treatment of $\mathbf{4 b}$ and $\mathbf{5 b}$ with methanolic sodium methoxide.

$+$

(ii) $\square \begin{aligned} & \mathbf{2 a}, \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H} \\ & \mathbf{2 b}, \mathrm{R}=\mathrm{Ac}, \mathrm{R}^{\prime}=\mathrm{H}\end{aligned}$
2c, $R=A c, R^{\prime}=B z$
(ii)

1

(iii) $\square \mathbf{4 a , R}=\mathrm{H}$

(i) adenine/DBU/DMF, $125^{\circ} \mathrm{C}, 27 \%$ of $\mathbf{2 a}, 10 \%$ of $\mathbf{3 a}$; (ii) $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{AcOH} / \mathrm{DMAP} / \mathrm{MeCN}$;
(iii) $\mathrm{BzCl} /$ pyridine; (iv) thymine/DBU/DMF, $125^{\circ} \mathrm{C}, 21 \%$ of $\mathbf{4 a}, 12 \%$ of $\mathbf{5 a}$

Scheme 1
Infrared spectra of thymine derivatives $\mathbf{4 b}$ and $\mathbf{5 b}$ exhibit NH bands at $3396 \mathrm{~cm}^{-1}$, in agreement with the literature data ${ }^{6}$ for N^{1}-substituted uracils. The positions of the absorption bands in UV spectra of these compounds remained virtually unchanged independently of pH whereas in alkaline medium, the absorption decreased: such pattern is characteristic of N^{1}-substituted uracil derivatives ${ }^{7}$. The linkage of the cyclohexane ring with adenine in position N-9 of compounds 2a and 3a was confirmed by their UV spec-
tra. The absorption maximum at 262 nm (water) and $260 \mathrm{~nm}(0.1 \mathrm{~m} \mathrm{HCl})$ in UV spectra of the adenine derivatives 2a and $\mathbf{3 a}$ corresponds to N^{9}-substituted adenine derivatives ${ }^{8}$. Also proton-coupled ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{2 b}, \mathbf{3 b}, \mathbf{4 b}$ and $\mathbf{5 b}$ confirmed the position of substitution on the nucleoside base. The long-range coupling constants ${ }^{3}$ (C-4', H-2) $=3.9$, ${ }^{3} \mathrm{~J}\left(\mathrm{C}-8^{\prime}, \mathrm{H}-2\right)=4.9$ (adenine derivatives 2b, 3b) and ${ }^{3} \mathrm{~J}\left(\mathrm{C}-2^{\prime}, \mathrm{H}-2\right)=3.9$, ${ }^{3} \mathrm{~J}\left(\mathrm{C}-6^{\prime}, \mathrm{H}-2\right) \approx 3.0$ (thymine derivatives $\mathbf{4 b}, \mathbf{5 b}$) were found in the spectra.

Oxidation of adenine vinyl derivatives $\mathbf{2 c}$ and $\mathbf{3 c}$ (obtained by benzoylation of $\mathbf{2 b}$ and $\mathbf{3 b}$) with sodium periodate in aqueous 1,4 -dioxane in the presence of catalytic amounts of ruthenium(IV) oxide (generated from ruthenium(III) chloride) led to carboxylic acids $\mathbf{6 a}$ and $\mathbf{7 a}$, respectively (Schemes 2 and 3). Aldehydes 9 and 12 as intermediates of this oxidation and isomers with inverse configuration at α-carbon were not detected in the reaction mixture. Oxidation of vinyl derivatives $\mathbf{2 c}$ and $3 \mathbf{3}$ with ruthenium(IV) oxide under Sharpless' conditions ${ }^{9}$ gave also the carboxylic acids

2c, $B=6$-(dibenzoylamino)-purin- $9-y l, R=A c$
4b, $B=$ thymin $-1-y l, R=B z$

(ii) $\square \begin{aligned} & 6 \mathbf{a}, \mathrm{R}=\mathrm{Ac}, \mathrm{R}^{\prime}=\mathrm{Bz} \\ & \mathbf{6 b}, \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}\end{aligned}$

8, $B=6$-(dibenzoylamino)-purin-9-yl, R = Ac
11, $B=$ thymin- $1-y l, R=B z$

9, $B=6$-(dibenzoylamino)-purin-9-yl, $R=A c$
12, $B=$ thymin- $1-y l, R=B z$
(i) $\mathrm{RuCl}_{3} / \mathrm{NaIO}_{4} /$ aq. dioxane, 87%; (ii) $\mathrm{NH}_{3} / \mathrm{MeOH}$; (iii) $\mathrm{OsO}_{4} / \mathrm{NaClO}_{3} /$ aq. dioxane;
(iv) $\mathrm{NaIO}_{4} / \mathrm{aq}$. dioxane, $964 \%, 1251 \%$; (v) Amberlyst A-26 $\left(\mathrm{BH}_{4}^{-}\right) / \mathrm{aq}$. dioxane;
10a 76%, 13a 73%; (vi) $\mathrm{MeONa} / \mathrm{MeOH}$
without isomerisation. The reaction of thymine vinyl derivatives $\mathbf{4 b}$ and $\mathbf{5 b}$, performed in the same manner, afforded an inseparable mixture of products. Deprotection of $\mathbf{6 a}$ and $\mathbf{7 a}$ with methanolic ammonia gave free carboxylic acids 6b and $\mathbf{7 b}$, respectively.

14, $B=6$-(dibenzoylamino)-purin- $9-y l, R=A c$
17, $B=$ thymin- $1-y l, R=B z$
(iv)

15, $B=6$-(dibenzoylamino)-purin-9-yl, R = Ac
18, $B=$ thymin $-1-y l, R=B z$

(ii) $\square \begin{aligned} & 7 \mathbf{a}, \mathrm{R}=\mathrm{Ac}, \mathrm{R}^{\prime}=\mathrm{Bz} \\ & \mathbf{7 b}, \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}\end{aligned}$
(i)

(iii)

3c, $B=6$-(dibenzoylamino)-purin-9-yl, R = Ac
5b, $B=$ thymin $-1-y l, R=B z$

(v)

(ii) $\square \begin{aligned} & \text { 16a, } R=A c, R^{\prime}=B z \\ & \text { 16b, } R=R^{\prime}=H\end{aligned}$
(v)

(vi) $\square \begin{gathered}\text { 19a, } \mathrm{R}=\mathrm{Bz} \\ \text { 19b, } \mathrm{R}=\mathrm{H}\end{gathered}$
(i) $\mathrm{RuCl}_{3} / \mathrm{NaIO}_{4} /$ aq. dioxane, 85%; (ii) $\mathrm{NH}_{3} / \mathrm{MeOH}$; (iii) $\mathrm{OsO} \mathrm{O}_{4} / \mathrm{NaClO}_{3} /$ aq. dioxane;
(iv) $\mathrm{NaIO}_{4} /$ aq. dioxane, $1562 \%, 1849 \%$; (v) Amberlyst A-26 $\left(\mathrm{BH}_{4}-\right)$ /aq. dioxane;

16a 78\%, 19a 77\%; (vi) MeONa/MeOH
Scheme 3
Transformation of the vinyl to the hydroxymethyl group was achieved by several simple steps. Treatment of vinyl compounds $\mathbf{2 c}, \mathbf{3 c} \mathbf{4 b}$, and $\mathbf{5 b}$ with osmium(VIII) oxide and sodium chlorate provided diols 8, 11, 14, and 17, respectively, as inseparable mixtures of stereoisomers. They were converted, by the reaction with potassium periodate, to the respective aldehydes 9, 12, 15, and 18. Reduction of these compounds with Amberlyst A-26 in the $\mathrm{BH}_{4}{ }^{-}$form in 1,4-dioxane afforded the hydroxymethyl derivatives 10a, 13a, 16a, and 19a, respectively. The reduction of the adenine derivatives 9 and 15 resulted in inversion of configuration on the carbon atom bearing the reduced aldehyde group. Free nucleosides were finally obtained by treatment with methanolic ammonia (10b and 16b) and/or with methanolic sodium methoxide (13b and 19b).

The structure of prepared compounds was determined by ${ }^{1} \mathrm{H}$ NMR spectra (see Tables I-IV). Values of coupling constants (J $\left(1^{\prime}, 2^{\prime}\right)=10.0-11.0 \mathrm{~Hz}$) correspond to a trans axial orientation of protons $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-2^{\prime}$ and values of vicinal coupling constants $(J(e q, a x)=4.3-5.7 \mathrm{~Hz}, \mathrm{~J}(\mathrm{eq}, \mathrm{eq})=2.0-3.5 \mathrm{~Hz})$ consist with an equatorial orientation of protons $\mathrm{H}-4^{\prime}$ (Table II) and $\mathrm{H}-5^{\prime}$ (Table III), respectively. The vicinal coupling constants of the protons H-4'

Table I
Chemical shifts (δ, ppm) of cyclohexane nucleosides

$A, B=$ adenin $-9-y l$
$\mathrm{T}, \mathrm{B}=$ thymin $-1-\mathrm{yl}$

	2a	6b	9	10a	4a	12	13b
B	A	A	$A B z_{2}$	$A B z_{2}$	T	T	T
R	OH	OH	OAc	OAc	OH	OBz	OH
R^{\prime}	$\mathrm{CH}=\mathrm{CH}_{2}$	COOH	$\mathrm{CH}=\mathrm{O}$	$\mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{CH}=0$	$\mathrm{CH}_{2} \mathrm{OH}$
H-1'	4.12	4.08	4.59	4.58	4.06	4.59	4.01
H-2'	4.22	4.16	5.14	5.25	3.84	5.32	3.76
H-3'eq	2.00	2.36	2.46	2.10	1.93	2.63	1.96
H-3'ax	1.62	1.50	1.78	1.25	1.54	n	1.36
H-4'	2.63	2.80	2.88	1.73	2.56	2.80	1.86
H-5'eq	1.72	2.12	2.05	1.85	1.65	2.30	1.70
H-5'ax	1.69	1.59	1.83	1.18	1.61	n	1.42
H-6'eq	1.78	1.83	2.34	2.12	1.54	n	1.48
H-6'ax	2.25	2.20	2.30	2.93	1.78	n	1.72
H-2,H-8	8.14	8.08	8.67	8.73	7.53	7.62	7.60
($\mathrm{H}-6, \mathrm{CH}_{3}$)	8.10	8.05	8.66	8.68	1.78	1.68	1.77
$\mathrm{NH}_{2}(\mathrm{NH})$	7.12	7.11	-	-	11.10	11.16	11.08
H of R	4.84	4.95	1.50	1.50	4.83	arom	4.75
H of R^{\prime}	6.12	12.4	9.74	3.35	6.12	9.73	3.50
	5.15	-	-	3.29	5.10	-	3.44
	5.12	-	-	4.61	5.06	-	4.47

n , cannot be determined (1.76-1.87 m, 4 H).

Table II
Coupling constants (J, Hz) of cyclohexane nucleosides

	2a	6b	9	10a	4a	12	13b
B	A	A	$A B z_{2}$	ABz_{2}	T	T	T
R	OH	OH	OAc	OAc	OH	OBz	OH
R^{\prime}	$\mathrm{CH}=\mathrm{CH}_{2}$	COOH	$\mathrm{CH}=0$	$\mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{CH}=0$	$\mathrm{CH}_{2} \mathrm{OH}$
$1^{\prime}, 2^{\prime}$	10.0	10.0	10.4	10.4	10.4	11.0	10.0
2',3'eq	4.3	4.3	4.8	4.5	4.9	5.0	4.6
2',3'ax	11.0	10.8	11.6	11.5	11.0	11.0	11.3
3'eq, 3'ax	13.2	13.2	13.0	12.6	12.8	12.8	13.2
$3^{\prime} \mathrm{eq}, 4^{\prime}$	2.4	2.4	2.5	2.7	2.2	2.1	2.4
3'ax, 4^{\prime}	4.8	5.1	5.6	12.2	4.9	n	5.1
4', $5^{\prime} \mathrm{eq}$	2.8	2.5	2.5	2.5	2.3	2.0	2.4
4',5'ax	4.8	4.9	5.3	12.0	4.3	n	4.8
5'eq, $5^{\prime} \mathrm{ax}$	13.2	13.7	13.2	13.6	13.4	12.8	13.4
$5^{\prime} \mathrm{eq}, 6^{\prime} \mathrm{eq}$	3.5	2.8	3.4	3.5	n	2.0	3.0
5'eq, $6^{\prime} \mathrm{ax}$	4.8	3.7	3.7	3.6	3.8	2.0	n
5'ax, b'eq $^{\prime}$	3.5	4.0	4.4	3.7	4.3	n	3.8
5'ax,6'ax	13.0	13.6	13.6	13.0	13.2	n	13.4
6'eq, 1^{\prime}	4.0	3.9	4.0	4.3	4.0	4.0	3.8
6 'ax, 1^{\prime}	12.0	12.2	12.6	12.6	12.0	11.0	11.0
6'eq, 6^{\prime} ax	13.0	13.2	13.2	13.0	13.2	n	12.8
$3^{\prime} \mathrm{eq}, 5^{\prime} \mathrm{eq}$	2.0	2.0	2.2	2.0	2.0	2.2	2.0
2^{\prime}, R	5.6	n	-	-	5.4	-	5.5
$4^{\prime}, \mathrm{R}^{\prime}$	5.6	-	-	6.0	7.1	-	8.4
	-	-	-	6.4	-	-	7.3

n , cannot be determined.
$\left(J\left(4^{\prime}, 3^{\prime} a x\right)=12.2 \mathrm{~Hz}, \mathrm{~J}\left(4^{\prime}, 5^{\prime} \mathrm{ax}\right)=12.0 \mathrm{~Hz}\right)$ of compound 10a and $\mathrm{H}-5^{\prime}$ (J ($\left.5^{\prime}, 4^{\prime} \mathrm{ax}\right)=11.8 \mathrm{~Hz}, \mathrm{~J}\left(4^{\prime}, 6^{\prime} \mathrm{ax}\right)=12.4 \mathrm{~Hz}$) of compound 16b correspond to an equatorial orientation of these protons. The structure of thymine analog 13b was also proved by conversion to the oxabicyclooctane derivative $\mathbf{2 3}$

Table III
Chemical shifts (δ, ppm) of cyclohexane nucleosides

A, B = adenin- 9 - yl
$\mathrm{T}, \mathrm{B}=$ thymin $-1-\mathrm{yl}$

	3a	7b	15	16b	5a	18	19b
B	A	A	ABz_{2}	A	T	T	T
R	OH	OH	OAc	OH	OH	OBz	OH
R^{\prime}	$\mathrm{CH}=\mathrm{CH}_{2}$	COOH	$\mathrm{CH}=0$	$\mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{CH}=0$	$\mathrm{CH}_{2} \mathrm{OH}$
H-1'	4.32	4.34	4.57	4.14	4.31	4.59	4.20
H-2'	4.04	3.98	5.22	4.02	3.69	5.23	3.64
H-3'eq	1.82	1.88	1.96	2.01	1.76	2.11	1.70
H-3'ax	1.52	1.41	1.35	1.37	1.42	1.36	1.37
H-4'eq	1.78	2.09	2.31	1.74	1.69	2.26	1.70
H-4'ax	1.72	1.65	1.83	1.10	1.61	1.81	1.45
H-5'	2.61	2.81	2.95	1.59	2.55	2.87	1.85
H-6'eq	1.98	2.20	2.53	1.79	1.76	2.26	1.67
H-6'ax	2.32	2.33	2.66	1.94	1.84	2.20	1.74
H-2, H-8	8.17	8.17	8.77	8.13	7.59	7.81	7.58
(H-6, CH_{3})	8.11	8.10	8.69	8.10	1.77	1.71	1.77
$\mathrm{NH}_{2}(\mathrm{NH})$	7.13	7.13	-	7.12	11.10	11.19	11.08
H of R	4.87	4.86	1.48	4.84	4.85	arom	4.82
H of R^{\prime}	5.98	12.50	9.72	3.29	5.89	9.70	3.43 (2H)
	5.24	-	-	3.23	5.18	-	-
	5.20	-	-	5.52	5.15	-	4.55

Table IV
Coupling constants (J, Hz) of cyclohexane nucleosides

$\mathrm{A}, \mathrm{B}=$ adenin- -9 yl
$\mathrm{T}, \mathrm{B}=$ thymin $-1-\mathrm{yl}$

	3a	7b	15	16b	5a	18	19b
B	A	A	$A B z_{2}$	A	T	T	T
R	OH	OH	OAc	OH	OH	OBz	OH
R^{\prime}	$\mathrm{CH}=\mathrm{CH}_{2}$	COOH	$\mathrm{CH}=0$	$\mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{CH}=0$	$\mathrm{CH}_{2} \mathrm{OH}$
$1^{\prime}, 2^{\prime}$	10.0	10.0	10.5	10.0	11.0	10.5	10.5
2',3'eq	4.4	4.5	4.6	4.5	4.4	4.8	5.5
2',3'ax	11.0	11.0	11.4	10.7	11.0	11.4	10.7
3'eq, 3'ax	12.6	13.2	13.2	12.8	13.0	12.8	12.8
$3^{\prime} \mathrm{eq}, 4^{\prime} \mathrm{eq}$	2.7	2.6	3.2	2.7	n	3.2	n
$3^{\prime} e q 4{ }^{\prime} \mathrm{ax}$	3.8	3.7	3.9	3.4	4.4	4.0	4.0
3'ax,4'eq	4.1	3.8	4.0	3.4	3.7	3.9	4.2
3'ax, 4'ax	13.4	13.6	13.4	13.6	13.6	13.8	13.8
4'eq, 5^{\prime}	2.7	2.6	2.2	3.4	n	2.5	n
$4^{\prime} \mathrm{ax}, 5^{\prime}$	4.6	5.0	5.6	11.8	4.4	5.7	5.4
4'eq, 4'ax $^{\prime}$	13.2	13.8	13.4	13.6	13.6	13.8	13.8
6'eq, 1^{\prime}	4.0	4.4	4.6	4.1	4.0	4.0	4.2
6 6ax, 1^{\prime}	12.6	12.6	12.8	12.4	12.0	12.0	12.0
6 'eq, 5^{\prime}	2.5	2.2	2.2	3.5	n	2.5	2.2
6 'ax,5'	5.0	5.0	5.4	12.4	4.6	4.8	4.4
6^{\prime} eq, 6^{\prime} ax	13.0	13.2	13.2	12.6	13.0	13.0	12.8
4'eq, 6^{\prime} eq	2.2	2.2	2.2	2.1	n	n	2.2
2^{\prime},R	6.0	n	n	5.6	5.5	-	5.5
$5^{\prime}, \mathrm{R}^{\prime}$	5.1	-	-	6.2	4.9	-	7.6
	-	-	-	6.2	-	-	-

n , cannot be determined.
(Scheme 4). Mesylation of compound 13b with methanesulfonyl chloride in pyridine afforded a mixture of dimesyl derivative $\mathbf{2 0}$ (80\%) and anhydro derivative 21 (15\%). Further treatment of dimesylate $\mathbf{2 0}$ with DBU in acetonitrile at room temperature gave $\mathbf{2 1}$ in the yield of 69%. Reaction of compound 21 with saturated methanolic lithium hydroxide gave hydroxy derivative $\mathbf{2 2}$ which was spontaneously converted to oxabicyclooctylthymine 23 (78\%).

(i) MsCl/pyridine; 20 80\%, 21 15\%; (ii) DBU/MeCN, r.t., 69%; (iii) sat. methanolic LiOH, $60^{\circ} \mathrm{C}, 78 \%$

Scheme 4
The obtained findings indicate that compounds $\mathbf{3 a}$ and $\mathbf{5 a}$ arose from the endo-epoxide (from a mixture of isomers of $\mathbf{1}$), whereas the exo-epoxide afforded $\mathbf{2 a}$ and $\mathbf{4 a}$. This assumption was verified by the reaction of a mixture of isomers of $\mathbf{1}$ with water and DBU which gave, after benzoylation, the racemic compound 24b only (Scheme 5). The literature ${ }^{10}$ data are consistent with this postulate.

(i)

(ii) $\begin{array}{r}24 \mathrm{a}, \mathrm{R}=\mathrm{OH} \\ \longrightarrow 24 \mathrm{~b}, \mathrm{R}=\mathrm{Bz}\end{array}$
(i) $\mathrm{DBU} / \mathrm{H}_{2} \mathrm{O} / \mathrm{DMF}, 130^{\circ} \mathrm{C}$; (ii) $\mathrm{BzCl} /$ pyridine

In conclusion, new racemic 2-hydroxy-4- and 2-hydroxy-5-(hydroxymethyl)cyclohexyl analogues of adenine and thymine nucleosides were prepared from 3-vinyl-7-oxabicyclo[4.1.0]heptane. The obtained results demonstrate that inexpensive cyclohexane epoxides may be used in some cases as starting material for the synthesis of racemic carbocyclic nucleosides.

EXPERIMENTAL

Melting points were determined on a Kofler block and are uncorrected. IR spectra were recorded on a Bruker Equinox 55 spectrophotometer (wavenumbers in cm^{-1}) and UV spectra ($\lambda_{\text {max }}$ in nm) on a Unicam SP 8000 spectrometer. NMR spectra ($\delta, \mathrm{ppm} ; \mathrm{J}, \mathrm{Hz}$) were measured on a Varian UNITY 500 instrument (500 MHz for ${ }^{1} \mathrm{H}$ and 125.7 MHz for ${ }^{13} \mathrm{C}$) in hexadeuteriodimethyl sulfoxide and referenced to the solvent signal ($\delta 2.50$ and 39.70 , respectively). The spectra of the compounds $\mathbf{2 a}, \mathbf{3 a}, \mathbf{4 a}, \mathbf{5 a} \mathbf{6} \mathbf{6 b}, \mathbf{7 b}, \mathbf{9}, \mathbf{1 0 a}, \mathbf{1 2}, \mathbf{1 3 b}, \mathbf{1 5}, \mathbf{1 6 b}$, 18 and 19b are given in Tables I-IV. Column chromatography was performed on Silica gel 60 (Fluka) and thin-layer chromatography (TLC) on Silufol UV 254 foils (Kavalier, Votice). Solvents were evaporated at 2 kPa and bath temperature $36-60{ }^{\circ} \mathrm{C}$; the compounds were dried at 13 Pa and $50^{\circ} \mathrm{C}$. 3-Vinyl-7-oxabicyclo[4.1.0]heptane was a product of Aldrich.
> (1R*,2R*,5S*)-2-(6-Amino-9H-purin-9-yl)-5-vinylcyclohexyl Acetate (2b) and (1R*,2R*,45*)-2-(6-Amino-9H-purin-9-yl)-4-vinylcyclohexyl Acetate (3b)

A solution of adenine ($2.7 \mathrm{~g}, 20 \mathrm{mmol}$) in dimethylformamide (50 ml) and DBU (3.3 ml , 22 mmol) was stirred under argon at $125^{\circ} \mathrm{C}$ (bath). 3-Vinyl-7-oxabicyclo[4.1.0]heptane ($\mathbf{1}$; $2.6 \mathrm{ml}, 20 \mathrm{mmol}$) was added to the solution and the mixture was heated to $125^{\circ} \mathrm{C}$ for 2.5 h . After cooling, the reaction mixture was neutralized with acetic acid and evaporated. The residue was mixed with ethyl acetate (400 ml) and the insoluble material was filtered off and washed with the same solvent. The combined filtrates were washed with water (100 ml), the aqueous layer was extracted with ethyl acetate $(2 \times 200 \mathrm{ml})$ and the combined organic layers were dried over anhydrous sodium sulfate and evaporated. The residue was mixed with ether $(20 \mathrm{ml})$, the crystalline mixture of $\mathbf{2 a}$ and $\mathbf{3 a}$ was filtered off and washed with ether. To a stirred suspension of $\mathbf{2 a}$ and $\mathbf{3 a}$ in acetonitrile (40 ml), acetic acid (1 ml), 4-(dimethylamino) pyridine ($305 \mathrm{mg}, 2.5 \mathrm{mmol}$) and acetic anhydride ($2 \mathrm{ml}, 21 \mathrm{mmol}$) were added. After 3 h stirring, methanol (1 ml) was added, the reaction mixture was set aside for 15 min and taken down. A solution of the residue in ethyl acetate (200 ml) was washed with water (50 ml), saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{ml})$ and dried over anhydrous sodium sulfate. Crystallization of the residue from ethyl acetate afforded $1.27 \mathrm{~g}(21 \%)$ of compound $\mathbf{2 b}$. Chromatography of the mother liquors on a silica gel column (200 g) in ethyl acetate-acetone-ethanol-water (105:15:3:2) afforded 595 mg (10%) of compound $\mathbf{3 b}$ and 380 mg (6\%) of $\mathbf{2 b}$.

Compound 2b: M.p. $179-182{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}$ (301.3) calculated: $59.79 \% \mathrm{C}, 6.36 \% \mathrm{H}$, $23.24 \% \mathrm{~N}$; found: $59.70 \% \mathrm{C}, 6.46 \% \mathrm{H}, 23.02 \% \mathrm{~N} .{ }^{1} \mathrm{H}$ NMR: $1.64 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{COO}\right) ; 1.75 \mathrm{ddd}$, $1 \mathrm{H}, \mathrm{J}(6 \mathrm{ax}, 1)=11.6, \mathrm{~J}(6 \mathrm{ax}, 5)=4.9, \mathrm{~J}_{\text {gem }}=12.9(\mathrm{H}-6 \mathrm{ax}) ; 1.79 \mathrm{~m}, 2 \mathrm{H}(2 \times \mathrm{H}-4) ; 1.86 \mathrm{brdq}$, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=13.0(\mathrm{H}-3 \mathrm{eq}) ; 2.09 \mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}(6 \mathrm{eq}, 1)=4.5, \mathrm{~J}(6 \mathrm{eq}, 5)=2.6(\mathrm{H}-6 \mathrm{eq}) ; 2.47 \mathrm{tt}, 1 \mathrm{H}$, $\mathrm{J}(3 \mathrm{ax}, 4 \mathrm{ax})=\mathrm{J}(3 \mathrm{ax}, 4 \mathrm{eq})=8.6(\mathrm{H}-3 \mathrm{ax}) ; 2.70 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5) ; 4.47 \mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}(2,1)=10.4$,
$\mathrm{J}(2,3 \mathrm{ax})=12.6, \mathrm{~J}(2,3 \mathrm{eq})=4.3(\mathrm{H}-2) ; 5.19 \mathrm{dt}$ and $5.24 \mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=1.7,10.6$ and $17.3\left(\mathrm{CH}_{2}=\right)$; 5.44 ddd, $1 \mathrm{H}(\mathrm{H}-1) ; 6.14$ ddd, $\mathrm{J}(\mathrm{CH}, 5)=6.2$, $\mathrm{J}\left(\mathrm{CH}, \mathrm{CH}_{2}\right)=10.6$ and $17.3(\mathrm{CH}=) ; 7.17 \mathrm{brs}, 2 \mathrm{H}$ $\left(\mathrm{NH}_{2}\right) ; 8.11 \mathrm{~s}$ and $8.19 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-8^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $20.84 \mathrm{q}, \mathrm{J}=128.9\left(\mathrm{CH}_{3}\right) ; 26.58(\mathrm{C}-4)$; 28.83 (C-3); 34.87 (C-6); 36.50 (C-5); 58.09 (C-2); 70.68 (C-1); 115.91 ddd, J = 153.3, 158.2 and $5.9\left(\mathrm{CH}_{2}=\right) ; 119.25 \mathrm{dt}, \mathrm{J}\left(\mathrm{C}-5^{\prime}, \mathrm{H}-8^{\prime}\right)=11.7, \mathrm{~J}\left(\mathrm{C}-5^{\prime}, \mathrm{NH}_{2}\right)=4.9\left(\mathrm{C}-5^{\prime}\right) ; 140.67 \mathrm{dd}, \mathrm{J}=211.9$, $\mathrm{J}\left(\mathrm{C}-8^{\prime}, \mathrm{H}-2\right)=4.9\left(\mathrm{C}-8^{\prime}\right) ; 140.81 \mathrm{brdm}, \mathrm{J}=153.3$ ($\left.=\mathrm{CH}-\right)^{2} 150.00$ ddd, J(C-4', $\left.\mathrm{H}-2^{\prime}\right)=12.7$, $\mathrm{J}\left(\mathrm{C}-4^{\prime}, \mathrm{H}-8^{\prime}\right)=4.9, \mathrm{~J}\left(\mathrm{C}-4^{\prime}, \mathrm{H}-2\right)=3.9\left(\mathrm{C}-4^{\prime}\right) ; 152.73 \mathrm{~d}, \mathrm{~J}=198.2\left(\mathrm{C}-2^{\prime}\right) ; 156.27 \mathrm{~d}, \mathrm{~J}\left(\mathrm{C}-6^{\prime}, \mathrm{H}-2^{\prime}\right)=$ 11.7 (C-6'); $169.93 \mathrm{qd}, \mathrm{J}\left(\mathrm{CO}, \mathrm{CH}_{3}\right)=6.8, \mathrm{~J}(\mathrm{CO}, \mathrm{H}-1)=3.9(\mathrm{C}=0)$.

Compound 3b: M.p. $179-183{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}$ (301.3) calculated: 59.79\% C, $6.36 \% \mathrm{H}$, 23.24% N; found: 59.81% C, $6.49 \% \mathrm{H}, 22.99 \%$ N. ${ }^{1} \mathrm{H}$ NMR: $1.62 \mathrm{~m}, 1 \mathrm{H}$ (H-6ax); $1.63 \mathrm{~s}, 3 \mathrm{H}$ $\left(\mathrm{CH}_{3} \mathrm{COO}\right) ; 1.79$ tdd, $1 \mathrm{H}, \mathrm{J}(5 \mathrm{ax}, 4)=4.5, \mathrm{~J}(5 \mathrm{ax}, 6 \mathrm{ax})=13.9, \mathrm{~J}(5 \mathrm{ax}, 6 \mathrm{eq})=3.7, \mathrm{~J}_{\text {gem }}=13.9$ (H-5ax); $1.83 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5 \mathrm{eq}) ; 1.91 \mathrm{brdq}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=12.7$ (H-6eq); $2.05 \mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}(3 \mathrm{eq}, 2)=$ $4.4, \mathrm{~J}(3 \mathrm{eq}, 4)=2.2, \mathrm{~J}_{\text {gem }}=13.2$ (H-3eq); $2.59 \mathrm{td}, 1 \mathrm{H}, \mathrm{J}(3 \mathrm{ax}, 2)=12.8, \mathrm{~J}(3 \mathrm{ax}, 4)=4.9$ (H-3ax); $2.69 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-4) ; 4.60 \mathrm{ddd}, \mathrm{J}(2,1)=10.4(\mathrm{H}-2) ; 5.23 \mathrm{ddd}$ and $5.24 \mathrm{ddd}, 2 \mathrm{H}, \mathrm{J}=1.5,2.1$, 10.9 and $17.3\left(\mathrm{CH}_{2}=\right) ; 5.31 \mathrm{td}, 1 \mathrm{H}, \mathrm{J}(\mathrm{lax}, 6 \mathrm{ax})=10.6$, J(1ax,6eq) $=4.6(\mathrm{H}-1 \mathrm{ax}) ; 6.01 \mathrm{ddd}$, $1 \mathrm{H}, \mathrm{J}(\mathrm{CH}, 4)=5.0, \mathrm{~J}\left(\mathrm{CH}, \mathrm{CH}_{2}\right)=10.9$ and $17.3(\mathrm{CH}=) ; 7.18 \mathrm{brs}, 2 \mathrm{H}\left(\mathrm{NH}_{2}\right) ; 8.12 \mathrm{~s}$ and 8.24 s , $2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-8^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $20.52 \mathrm{q}, \mathrm{J}=128.9\left(\mathrm{CH}_{3}\right) ; 26.60$ and $27.10(\mathrm{C}-3, \mathrm{C}-5) ; 33.73(\mathrm{C}-6)$; 35.27 (C-4); 53.15 (C-2); 73.65 (C-1); 115.78 ddd, J $=154.3$, 157.2 and $5.9\left(\mathrm{CH}_{2}=\right) ; 118.97 \mathrm{dt}$, $\mathrm{J}\left(\mathrm{C}-5^{\prime}, \mathrm{H}-8^{\prime}\right)=11.7, \mathrm{~J}\left(\mathrm{C}-5^{\prime}, \mathrm{NH}_{2}\right)=3.9\left(\mathrm{C}-5^{\prime}\right) ; 139.93 \mathrm{dd}, \mathrm{J}=211.9, \mathrm{~J}\left(\mathrm{C}-8^{\prime}, \mathrm{H}-2\right)=4.9\left(\mathrm{C}-8^{\prime}\right)$; 140.16 brdm, J = 153.3 ($=\mathrm{CH}-$); 149.77 ddd, $\mathrm{J}\left(\mathrm{C}-4^{\prime}, \mathrm{H}-2^{\prime}\right)=12.7, \mathrm{~J}\left(\mathrm{C}-4^{\prime}, \mathrm{H}-8^{\prime}\right)=4.9, \mathrm{~J}\left(\mathrm{C}-4^{\prime}, \mathrm{H}-2\right)$ $=3.9$ (C-4'); $152.40 \mathrm{~d}, \mathrm{~J}=198.25\left(\mathrm{C}-2^{\prime}\right) ; 156.13 \mathrm{~d}, \mathrm{~J}\left(\mathrm{C}-6^{\prime}, \mathrm{H}-2^{\prime}\right)=11.7$ (C-6'); 169.35 qd , $\mathrm{J}\left(\mathrm{CO}, \mathrm{CH}_{3}\right)=6.8, \mathrm{~J}(\mathrm{CO}, \mathrm{H}-1)=3.9(\mathrm{C}=\mathrm{O})$.

Deprotection of $\mathbf{2 b}$ and $\mathbf{3 b}$

A solution of acetate $\mathbf{2 b}$ or $\mathbf{3 b}$ ($301 \mathrm{mg}, 1 \mathrm{mmol}$) in methanolic ammonia (saturated at $0^{\circ} \mathrm{C}$, 2.5 ml) was set aside at room temperature overnight. The crystalline product was filtered off, washed with methanol and ether, and dried. The mother liquors were evaporated and the residue was crystallized from methanol.
(1R*,2R*,5S*)-2-(6-Amino-9H-purin-9-yl)-5-vinylcyclohexanol (2a), yield 220 mg (85\%). M.p. 197-199 ${ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ (259.3) calculated: $60.21 \% \mathrm{C}, 6.61 \% \mathrm{H}, 27.01 \% \mathrm{~N}$; found: $59.97 \% \mathrm{C}, 6.69 \% \mathrm{H}, 26.89 \%$ N. UV, $\lambda_{\max }(\varepsilon)$ (water): 204 (23 540), 262 (14 110); (0.1 M HCl): 211 (23 210), 259 (14 730).
(1R*,2R*,4S*)-2-(6-Amino-9H-purin-9-yl)-4-vinylcyclohexanol (3a), yield 211 mg (81\%). M.p. 178.5-180.5 ${ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ (259.3) calculated: $60.21 \% \mathrm{C}, 6.61 \% \mathrm{H}, 27.01 \% \mathrm{~N}$; found: $59.92 \% \mathrm{C}, 6.64 \% \mathrm{H}, 26.79 \% \mathrm{~N} . \mathrm{UV}, \lambda_{\max }(\varepsilon)$ (water): 203 (26 380), 262 (14 700); (0.1 M HCl): 211 (24 490), 260 (15 060).

Benzoylation of $\mathbf{2 b}$ and $\mathbf{3 b}$

Benzoyl chloride ($2.9 \mathrm{ml}, 25 \mathrm{mmol}$) was added to a solution of acetate $\mathbf{2 b}$ or $\mathbf{3 b}$ (3.01 g , 10 mmol) in pyridine (30 ml) and the mixture was set aside at room temperature for 5 days. Methanol (2 ml) was then added and, after 15 min , pyridine was evaporated. The residue was partitioned between ethyl acetate (300 ml) and water (50 ml). The organic layer was washed with water, 5% hydrochloric acid, water, saturated aqueous NaHCO_{3} (50 ml each), and dried over anhydrous sodium sulfate, the solvent was taken down and the residue was crystallized from ethanol.
(1R*,2R*,5S*)-2-[6-(Dibenzoylamino)-9H-purin-9-yl]-5-vinylcyclohexyl acetate (2c), yield 4.19 g (87%). M.p. $143-144.5{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}$ (509.6) calculated: $68.36 \% \mathrm{C}, 5.34 \% \mathrm{H}$, 13.74% N; found: 68.12% C, $5.38 \% \mathrm{H}, 13.54 \%$ N. ${ }^{1} \mathrm{H}$ NMR: $1.53 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{COO}\right) ; 1.80$ ddd, $1 \mathrm{H}, \mathrm{J}(6 \mathrm{ax}, 1)=11.8, \mathrm{~J}(6 \mathrm{ax}, 5)=5.0, \mathrm{~J}_{\text {gem }}=12.9(\mathrm{H}-6 \mathrm{ax}) ; 1.83 \mathrm{~m}, 2 \mathrm{H}(\mathrm{H}-4) ; 1.99 \mathrm{brdq}, 1 \mathrm{H}, \mathrm{J}=$ $3.7, \mathrm{~J}_{\text {gem }}=13.0(\mathrm{H}-3 \mathrm{eq}) ; 2.09 \mathrm{brddd}, 1 \mathrm{H}, \mathrm{J}(6 \mathrm{eq}, 1)=4.8, \mathrm{~J}(6 \mathrm{eq}, 5)=2.0(\mathrm{H}-6 \mathrm{eq}) ; 2.56 \mathrm{~m}, 1 \mathrm{H}$, J(3ax,2) = 12.4, J(3ax,4) = 4.0 and 13.6 (H-3ax); 2.72 m, 1 H (H-5); 4.62 ddd, 1 H, J(2,1) = $10.5, \mathrm{~J}(2,3 \mathrm{eq})=4.3(\mathrm{H}-2) ; 5.21 \mathrm{dt}$ and $5.24 \mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=1.7,10.6$ and $17.3\left(\mathrm{CH}_{2}=\right) ; 5.37 \mathrm{ddd}$, $1 \mathrm{H}(\mathrm{H}-1) ; 6.14 \mathrm{ddd}, \mathrm{J}(\mathrm{CH}, 5)=6.1, \mathrm{~J}\left(\mathrm{CH}, \mathrm{CH}_{2}\right)=10.6$ and $17.3(\mathrm{CH}=) ; 7.44 \mathrm{t}, 4 \mathrm{H}, 7.58 \mathrm{t}, 2 \mathrm{H}$ and $7.65 \mathrm{~d}, 4 \mathrm{H}$ (H-arom.); 8.68 s and $8.72 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-8^{\prime}\right)$.
(1R*,2R*,4S*)-2-[6-(Dibenzoylamino)-9H-purin-9-yl]-4-vinylcyclohexyl acetate (3c), yield 4.35 g (85\%). M.p. $196-198{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}$ (509.6) calculated: $68.36 \% \mathrm{C}, 5.34 \% \mathrm{H}, 13.74 \% \mathrm{~N}$; found: $68.15 \% \mathrm{C}, 5.33 \% \mathrm{H}, 13.56 \% \mathrm{~N} .{ }^{1} \mathrm{H}$ NMR: $1.50 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{COO}\right) ; 1.66$ tdd, 1 H , $\mathrm{J}(\mathrm{H}-6 \mathrm{ax}, 1)=11.2, \mathrm{~J}(6 \mathrm{ax}, 5 \mathrm{ax})=13.0, \mathrm{~J}(6 \mathrm{ax}, 5 \mathrm{eq})=4.4, \mathrm{~J}$ gem $=12.6(\mathrm{H}-6 \mathrm{ax}) ; 1.82$ tdd, 1 H , $J(5 a x, 4)=4.4, J(5 a x, 6 a x)=13.7, J(5 a x, 6 e q)=2.8(H-5 a x) ; 1.88 \mathrm{dm}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }} 13.8$ (H-5eq); $1.91 \mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}(6 \mathrm{eq}, 1)=4.6, \mathrm{~J}(6 \mathrm{eq}, 5 \mathrm{ax})=\mathrm{J}(6 \mathrm{eq}, 5 \mathrm{eq})=3.0(\mathrm{H}-6 \mathrm{eq}) ; 2.21 \mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}(3 \mathrm{eq}, 2)=$ 4.3, J(3eq,4) $=2.2, \mathrm{~J}_{\text {gem }}=13.2(\mathrm{H}-3 \mathrm{eq}) ; 2.68 \mathrm{td}, 1 \mathrm{H}, \mathrm{J}(3 \mathrm{ax}, 4)=4.9(\mathrm{H}-3 \mathrm{ax}) ; 2.74 \mathrm{~m}, 1 \mathrm{H}$ $(\mathrm{H}-4) ; 4.73 \mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}(2,1)=10.4, \mathrm{~J}(2,3 \mathrm{ax})=12.8(\mathrm{H}-2) ; 5.24 \mathrm{dt}$ and $5.26 \mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=1.7$, 10.7 and $17.6\left(\mathrm{CH}_{2}=\right) ; 5.25 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-1) ; 6.01 \mathrm{ddd}, \mathrm{J}(\mathrm{CH}, 4)=4.8, \mathrm{~J}\left(\mathrm{CH}, \mathrm{CH}_{2}\right)=10.7$ and 17.6 ($\mathrm{CH}=$); $7.45 \mathrm{t}, 4 \mathrm{H}, 7.60 \mathrm{t}, 2 \mathrm{H}$ and $7.76 \mathrm{~d}, 4 \mathrm{H}$ (H-arom.); 8.68 s and $8.77 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-8^{\prime}\right)$.
(1R*,2R*,5S*)-2-[5-M ethyl-2,4-dioxo-3,4-dihydroxypyrimidin-1(2H)-yl]-
5-vinylcyclohexyl Benzoate (4b) and (1R*,2R*,4S*)-2-[5-M ethyl-2,4-dioxo-
3,4-dihydroxypyrimidin-1(2H)-yl]-4-vinylcyclohexyl Benzoate (5b)
A solution of thymine ($5.10 \mathrm{~g}, 40 \mathrm{mmol}$) and DBU ($6.6 \mathrm{ml}, 44 \mathrm{mmol}$) in dimethylformamide $(80 \mathrm{ml})$ was heated at $130{ }^{\circ} \mathrm{C}$ under argon. 3-Vinyl-7-oxabicyclo[4.1.0]heptane (5.20 ml , 40 mmol) was added in 5 portions to the stirred solution during 3 h and the mixture was heated to $130{ }^{\circ} \mathrm{C}$ for additional 1.5 h . After cooling, the reaction mixture was neutralized with acetic acid and evaporated. The residue was partitioned between ethyl acetate (700 ml) and water (140 ml), the aqueous layer was extracted with ethyl acetate (200 ml) and the combined organic layers were dried over anhydrous sodium sulfate and evaporated. Benzoyl chloride ($4.3 \mathrm{ml}, 37 \mathrm{mmol}$) was added dropwise to an ice-cool solution of the residue in pyridine (60 ml) and the mixture was set aside at room temperature overnight. Methanol $(2 \mathrm{ml})$ was then added and, after 15 min , pyridine was evaporated. The residue was partitioned between ethyl acetate (300 ml) and water (50 ml). The organic layer was washed with water, 5% hydrochloric acid, water, saturated aqueous NaHCO_{3} (50 ml each), dried over anhydrous sodium sulfate, and the solvent was taken down. Crystallization of the residue from propan-2-ol afforded $2.40 \mathrm{~g}(17 \%)$ of compound $\mathbf{4 b}$. Chromatography of the mother liquors on a silica gel column (250 g) in ethyl acetate-toluene (1:1) and crystallization from propan-2-ol afforded $1.70 \mathrm{~g}(12 \%)$ of isomer $\mathbf{5 b}$ and 600 mg (4\%) of compound $\mathbf{4 b}$.

Compound 4b: M.p. $227-229{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ (354.4) calculated: $67.78 \% \mathrm{C}, 6.26 \% \mathrm{H}$, 7.90% N; found: 67.65% C, $6.35 \% \mathrm{H}, 7.91 \%$ N. IR (c 2\%, CHCl_{3}): 3396 (NH); 1710, 1688 ($\mathrm{C}=0$); 1655 ($\mathrm{C}=\mathrm{C}$); 1603, 1585, 1492, 1452, 1317, 1179, 1114, 1071, 1028 and 687 (arom.); $1273(\mathrm{C}-\mathrm{O}) ; 924\left(=\mathrm{CH}_{2}\right) .{ }^{1} \mathrm{H}$ NMR: $1.71 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.2\left(\mathrm{CH}_{3}\right) ; 1.73 \mathrm{dq}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.8$ (H-3eq); $1.78 \mathrm{~m}, 2 \mathrm{H}(\mathrm{H}-4) ; 1.81 \mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}(6 \mathrm{ax}, 1)=11.5, \mathrm{~J}(6 \mathrm{ax}, 5)=5.0, \mathrm{~J}$ gem $=12.8$ (H-6ax); $2.10 \mathrm{qd}, 1 \mathrm{H}, \mathrm{J}(3 \mathrm{ax}, 2)=\mathrm{J}(3 \mathrm{ax}, 4 \mathrm{ax})=12.3$, J $(3 \mathrm{ax}, 4 \mathrm{eq})=5.0(\mathrm{H}-3 \mathrm{ax}) ; 2.21 \mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}=2.1$ (H-6eq); $2.68 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5) ; 4.63 \mathrm{brtd}, 1 \mathrm{H}, \mathrm{J}(2,1)=11.0, \mathrm{~J}(2,3 \mathrm{eq})=4.0(\mathrm{H}-2) ; 5.18 \mathrm{dt}$ and
$5.25 \mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=1.7,10.5$ and $17.2\left(\mathrm{CH}_{2}=\right) ; 5.31 \mathrm{td}, 1 \mathrm{H}, \mathrm{J}(1,6 \mathrm{eq})=4.5(\mathrm{H}-1) ; 6.21 \mathrm{ddd}$, $\mathrm{J}(\mathrm{CH}, 5)=6.7, \mathrm{~J}\left(\mathrm{CH}, \mathrm{CH}_{2}\right)=10.5$ and $17.2(\mathrm{CH}=) ; 7.49 \mathrm{t}, 2 \mathrm{H}, 7.64 \mathrm{t}, 1 \mathrm{H}$ and $7.84 \mathrm{~d}, 2 \mathrm{H}$ (H-arom.); 7.70 brs, $1 \mathrm{H}\left(\mathrm{H}-6^{\prime}\right) ; 11.19 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR: $12.03 \mathrm{qd}, \mathrm{J}=127.9$, J($\left.\mathrm{CH}_{3}, \mathrm{H}-6^{\prime}\right)$ $=4.9\left(\mathrm{CH}_{3}\right) ; 25.09(\mathrm{C}-4) ; 28.93(\mathrm{C}-3) ; 35.00(\mathrm{C}-6) ; 36.65(\mathrm{C}-5) ; 57.90(\mathrm{C}-2) ; 70.64(\mathrm{C}-1)$; $109.24 \mathrm{brq}, \mathrm{J}\left(\mathrm{C}-5^{\prime}, \mathrm{CH}_{3}\right)=6.8, \mathrm{~J}\left(\mathrm{C}-5^{\prime}, \mathrm{H}-6^{\prime}\right)=1.0\left(\mathrm{C}-5^{\prime}\right) ; 115.45 \mathrm{ddd}, \mathrm{J}=153.3,158.2$ and 5.9 $\left(\mathrm{CH}_{2}=\right) ; 128.91 \mathrm{dd}, \mathrm{J}=164.1$ and $7.8,129.22 \mathrm{ddd}, \mathrm{J}=163.1,5.9$ and $7.8,129.53 \mathrm{~m}$ and $133.66 \mathrm{dt}, \mathrm{J}=164.1$ and 6.8 (C-arom.); $138.11 \mathrm{brdm}, \mathrm{J}=180.7, \mathrm{~J}\left(\mathrm{C}-6^{\prime}, \mathrm{CH}_{3}\right) \approx \mathrm{J}\left(\mathrm{C}-6^{\prime}, \mathrm{H}-2\right) \approx$ 3.9 (C-6'); $140.60 \mathrm{brdm}, \mathrm{J}=152.3(=\mathrm{CH}-) ; 151.43 \mathrm{dd}, \mathrm{J}\left(\mathrm{C}-2^{\prime}, \mathrm{H}-2\right)=3.9, \mathrm{~J}\left(\mathrm{C}-2^{\prime}, \mathrm{H}-6^{\prime}\right)=8.8$ $\left(\mathrm{H}-2^{\prime}\right) ; 163.71 \mathrm{dq}, \mathrm{J}\left(\mathrm{C}-4^{\prime}, \mathrm{CH}_{3}\right)=3.9$, J(C-4', $\left.\mathrm{H}-6^{\prime}\right)=9.8\left(\mathrm{C}-4^{\prime}\right) ; 165.08 \mathrm{brq}, \mathrm{J}=3.9(\mathrm{C}=0)$.

Compound 5b: M.p. $165-168{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ (354.4) calculated: $67.78 \% \mathrm{C}, 6.26 \% \mathrm{H}$, 7.90% N; found: 67.49% C, $6.28 \% \mathrm{H}, 7.73 \%$ N. IR (c 2\%, CHCl_{3}): 3396 (NH); 1711, 1688 ($\mathrm{C}=0$); 1655 ($\mathrm{C}=\mathrm{C}$); 1603, 1585, 1492, 1471, 1317, 1178, 1113, 1071, 1028 and 687 (arom.); 1273 (C-O); 991(trans $\mathrm{CH}=\mathrm{CH}$); $924\left(=\mathrm{CH}_{2}\right) .{ }^{1} \mathrm{H}$ NMR: $1.71 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.1\left(\mathrm{CH}_{3}\right) ; 1.66$ tdd, $1 \mathrm{H}, \mathrm{J}(6 \mathrm{ax}, 1)=11.5, \mathrm{~J}(6 \mathrm{ax}, 5 \mathrm{ax})=13.6, \mathrm{~J}(6 \mathrm{ax}, 5 \mathrm{eq})=6.0, \mathrm{~J}_{\text {gem }}=13.6(\mathrm{H}-6 \mathrm{ax}) ; 1.80$ tdd, 1 H , $J(5 a x, 4)=4.1, \mathrm{~J}(5 \mathrm{ax}, 6 \mathrm{eq})=3.9, \mathrm{~J}_{\text {gem }}=13.6(\mathrm{H}-5 \mathrm{ax}) ; 1.83 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5 \mathrm{eq}) ; 1.99 \mathrm{ddt}, 1 \mathrm{H}$, $J(3 \mathrm{eq}, 2)=4.0, \mathrm{~J}(3 \mathrm{eq}, 4)=2.1, \mathrm{~J}_{\text {gem }}=13.2(\mathrm{H}-3 \mathrm{eq}) ; 2.04 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6 \mathrm{eq}) ; 2.24 \mathrm{td}, 1 \mathrm{H}$, $\mathrm{J}(3 \mathrm{ax}, 4)=5.0(\mathrm{H}-3 \mathrm{ax}) ; 2.68 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-4) ; 4.82 \mathrm{brddd}, 1 \mathrm{H}, \mathrm{J}(2,1)=10.5, \mathrm{~J}(2,3 \mathrm{ax})=12.5$ ($\mathrm{H}-2$) ; 5.22 ddd and 5.23 ddd, $2 \mathrm{H}, \mathrm{J}=1.6,2.0,10.9$ and $17.3\left(\mathrm{CH}_{2}=\right) ; 5.26$ brtd, 1 H , $\mathrm{J}(1,6 \mathrm{eq})=4.9(\mathrm{H}-1) ; 5.97$ ddd, $\mathrm{J}(\mathrm{CH}, 4)=4.8, \mathrm{~J}\left(\mathrm{CH}, \mathrm{CH}_{2}\right)=10.9$ and $17.3(\mathrm{CH}=) ; 7.48 \mathrm{t}, 2 \mathrm{H}$, $7.63 \mathrm{t}, 1 \mathrm{H}$ and $7.83 \mathrm{~d}, 2 \mathrm{H}$ (H-arom.); $7.81 \mathrm{brq}, 1 \mathrm{H}, \mathrm{J}=1.0\left(\mathrm{H}-6^{\prime}\right) ; 11.18 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR: 12.22 qd, J $=128.9$, J $\left(\mathrm{CH}_{3}, \mathrm{H}-6^{\prime}\right)=4.9\left(\mathrm{CH}_{3}\right) ; 26.78$ and $26.86(\mathrm{C}-3, \mathrm{C}-5) ; 32.37$ (C-6); 35.26 (C-4); 52.40 (C-2); 73.67 (C-1); $109.24 \mathrm{brq}, \mathrm{J}\left(\mathrm{C}-5^{\prime}, \mathrm{CH}_{3}\right)=6.8$, J(C-5', $\left.\mathrm{H}-6^{\prime}\right)=1.0$ $\left(\mathrm{C}-5^{\prime}\right) ; 115.74$ ddd, $\mathrm{J}=153.3,158.2$ and $5.9\left(\mathrm{CH}_{2}=\right) ; 137.83 \mathrm{brdm}, \mathrm{J}=180.2, \mathrm{~J}\left(\mathrm{C}-6^{\prime}, \mathrm{CH}_{3}\right) \approx$ $\mathrm{J}\left(\mathrm{C}-6^{\prime}, \mathrm{H}-2\right) \approx 3.9\left(\mathrm{C}-6^{\prime}\right) ; 140.21 \mathrm{brdm}, \mathrm{J}=153.3(=\mathrm{CH}-) ; 151.51 \mathrm{dd}, \mathrm{J}\left(\mathrm{C}-2^{\prime}, \mathrm{H}-2\right)=3.9$, $\mathrm{J}\left(\mathrm{C}-2^{\prime}, \mathrm{H}-6^{\prime}\right)=8.8\left(\mathrm{H}-2^{\prime}\right) ; 163.67 \mathrm{dq}, \mathrm{J}\left(\mathrm{C}-4^{\prime}, \mathrm{CH}_{3}\right)=3.9, \mathrm{~J}\left(\mathrm{C}-4^{\prime}, \mathrm{H}-6^{\prime}\right)=9.8\left(\mathrm{C}-4^{\prime}\right)$;

Deprotection of Compounds $\mathbf{4 b}$ and $\mathbf{5 b}$

A solution of benzoate $\mathbf{4 b}$ or $\mathbf{5 b}$ ($354 \mathrm{mg}, 1 \mathrm{mmol}$) in 0.1 m methanolic sodium methoxide $(6 \mathrm{ml})$ was set aside at room temperature overnight and then neutralized with Dowex 50 $\left(\mathrm{H}^{+}\right)$. The resin was filtered off, washed with methanol and the combined filtrates were evaporated. The residue was triturated with ether, the crystalline solid was filtered off and washed with ether.

1-[(1R*,2R*,4S*)-2-Hydroxy-4-vinylcyclohexyl]-5-methylpyrimidine-2,4(1H,3H)-dione (4a), yield 230 mg (92\%). M.p. $143-145.5^{\circ} \mathrm{C}$. For $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (518.6) calculated: 60.22\% C, $7.39 \% \mathrm{H}, 10.80 \% \mathrm{~N}$; found: $60.51 \% \mathrm{C}, 7.34 \% \mathrm{H}, 10.67 \% \mathrm{~N} . \operatorname{UV}, \lambda_{\max }(\varepsilon)$ (water): 273 (11 440); (0.1 м NaOH): 272 (5920).

1-[(1R*,2R*,5S*)-2-Hydroxy-5-vinylcyclohexyl]-5-methylpyrimidine-2,4(1H,3H)-dione (5a), yield 234 mg (93\%). M.p. $203.5-204.5^{\circ} \mathrm{C}$. For $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}(250.3)$ cal culated: $62.38 \% \mathrm{C}, 7.25 \% \mathrm{H}$, $11.19 \% \mathrm{~N}$; found: $62.09 \% \mathrm{C}, 7.41 \% \mathrm{H}, 11.30 \% \mathrm{~N} . \mathrm{UV}, \lambda_{\max }(\varepsilon)$ (water): 273 (9090); (0.1 M $\mathrm{NaOH}): 272$ (7350).

Preparation of Carboxylic Acids 6a and 7a. General Procedure

Ruthenium(III) chloride hydrate (7 mg) was added to a solution of the vinyl derivative $\mathbf{2 c}$ or 3c ($459 \mathrm{mg}, 0.9 \mathrm{mmol}$) in 1,4-dioxane (12 ml). Then a saturated solution of sodium periodate was added dropwise with stirring which was continued until the starting vinyl derivative disappeared. The reaction was monitored by TLC in ethyl acetate-toluene (1:1).

The mixture was filtered, the solid was washed with 1,4 -dioxane and the combined filtrates were evaporated. A solution of the residue in ethyl acetate (70 ml) was washed with water (10 ml), 15% aqueous sodium thiosulfate (10 ml), dried over anhydrous sodium sulfate, the solvent was taken down and the residue was crystallized from ethyl acetate.
($1 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}, 4 \mathrm{~S}^{*}$)-3-A cetoxy-4-[6-(dibenzoylamino)-9H-purin-9-yl]cyclohexanecarboxylic acid (6a), yield $413 \mathrm{mg}(87 \%)$. M.p. $143-145{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{6}$ (527.5) calculated: 63.75\% C, $4.78 \% \mathrm{H}, 13.28 \% \mathrm{~N}$; found: $63.47 \% \mathrm{C}, 4.99 \% \mathrm{H}, 12.99 \% \mathrm{~N} .{ }^{1} \mathrm{H}$ NMR: $1.53 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{COO}\right)$; 1.72 ddd, $1 \mathrm{H}, \mathrm{J}(2 \mathrm{ax}, 1)=5.3, \mathrm{~J}(2 \mathrm{ax}, 3)=11.4, \mathrm{~J}_{\text {gem }}=12.8(\mathrm{H}-2 \mathrm{ax}) ; 1.74 \mathrm{tdd}, 1 \mathrm{H}, \mathrm{J}(6 \mathrm{ax}, 1)=$ 4.9, J(6ax,5ax) $=13.6, \mathrm{~J}(6 \mathrm{ax}, 5 \mathrm{eq})=4.0, \mathrm{~J}_{\text {gem }}=13.6(\mathrm{H}-6 \mathrm{ax}) ; 2.05 \mathrm{dq}, 1 \mathrm{H}, \mathrm{J}(5 \mathrm{eq}, 6 \mathrm{ax})=$ $\mathrm{J}(5 \mathrm{eq}, 6 \mathrm{eq})=4.0, \mathrm{~J}_{\text {gem }}=13.0(\mathrm{H}-5 \mathrm{eq}) ; 2.21 \mathrm{dpent}, 1 \mathrm{H}, \mathrm{J}=2.2(\mathrm{H}-6 \mathrm{eq}) ; 2.36 \mathrm{ddt}, 1 \mathrm{H}$, $\mathrm{J}(2 \mathrm{eq}, 1)=2.6, \mathrm{~J}(2 \mathrm{eq}, 3)=4.6, \mathrm{~J}(2 \mathrm{eq}, 6 \mathrm{eq})=2.0(\mathrm{H}-2 \mathrm{eq}) ; 2.53 \mathrm{qd}, 1 \mathrm{H}, \mathrm{J}(5 \mathrm{ax}, 6 \mathrm{ax})=13.2$, $\mathrm{J}(5 \mathrm{ax}, 6 \mathrm{eq})=4.0(\mathrm{H}-5 \mathrm{ax}) ; 4.58 \mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}(4,3)=10.4, \mathrm{~J}(4,5 \mathrm{ax})=12.7, \mathrm{~J}(4,5 \mathrm{eq})=4.1(\mathrm{H}-4)$; 5.36 ddd, $1 \mathrm{H}(\mathrm{H}-3) ; 7.44 \mathrm{t}, 4 \mathrm{H}, 7.58 \mathrm{t}, 2 \mathrm{H}$ and $7.74 \mathrm{~d}, 4 \mathrm{H}$ (H-arom.); 8.63 s and 8.65 s , $2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-8^{\prime}\right) ; 12.75 \mathrm{brs}, 1 \mathrm{H}(\mathrm{COOH})$.
(1R*, 3S*, 4S*)-4-Acetoxy-3-[6-(dibenzoylamino)-9H-purin-9-yl]cyclohexanecarboxylic acid (7a), yield $405 \mathrm{mg}(85 \%)$. M.p. $128-131{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{6}$ (527.5) calculated: $63.75 \% \mathrm{C}$, $4.78 \% \mathrm{H}, 13.28 \% \mathrm{~N}$; found: $63.46 \% \mathrm{C}, 5.02 \% \mathrm{H}, 13.00 \%$ N. ${ }^{1} \mathrm{H}$ NMR: $1.48 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{COO}\right)$; $1.54 \mathrm{tdd}, 1 \mathrm{H}, \mathrm{J}(5 \mathrm{ax}, 4)=11.5, \mathrm{~J}(5 \mathrm{ax}, 6 \mathrm{ax})=13.6, \mathrm{~J}(5 \mathrm{ax}, 6 \mathrm{eq})=3.5, \mathrm{~J}$ gem 13.6 (H-5ax); 1.79 tdd , $1 \mathrm{H}, \mathrm{J}(6 \mathrm{ax}, 1)=5.1, \mathrm{~J}_{\text {gem }}=13.9$ (H-6ax); $1.99 \mathrm{brddt}, 1 \mathrm{H}(\mathrm{H}-5 e q) ; 2.16$ dpent, $1 \mathrm{H}, \mathrm{J}=2.5$ (H-6eq); $2.37 \mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}(2 \mathrm{eq}, 1)=2.2, \mathrm{~J}(2 \mathrm{eq}, 3)=4.4, \mathrm{~J}_{\mathrm{gem}}=13.2(\mathrm{H}-2 \mathrm{eq}) ; 2.60 \mathrm{td}, 1 \mathrm{H}$, $\mathrm{J}(2 \mathrm{ax}, 1)=5.1(\mathrm{H}-2 \mathrm{ax}) ; 2.96 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-1) ; 4.84 \mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}(3,2 \mathrm{ax})=12.8, \mathrm{~J}(3,4)=10.4(\mathrm{H}-3)$; $5.22 \mathrm{td}, 1 \mathrm{H}, \mathrm{J}(4,5 \mathrm{eq})=4.6(\mathrm{H}-4) ; 7.44 \mathrm{t}, 4 \mathrm{H}, 7.60 \mathrm{t}, 2 \mathrm{H}$ and $7.76 \mathrm{~d}, 4 \mathrm{H}$ (H-arom.); 8.68 s and $8.81 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-8^{\prime}\right) ; 12.65 \mathrm{brs}, 1 \mathrm{H}(\mathrm{COOH})$.

Deprotection of 6a and 7a

Compound $\mathbf{6 a}$ or $\mathbf{7 a}$ ($264 \mathrm{mg}, 0.5 \mathrm{mmol}$) was dissolved under stirring in methanolic ammonia (saturated at $0{ }^{\circ} \mathrm{C}, 4.5 \mathrm{ml}$) and then set aside at room temperature for 3 days. The solvent was evaporated and the residue was crystallized from propan-2-ol (6b) or ethanol (7b).
(1R*,3S*, 4S*)-4-(6-Amino-9H-purin-9-yl)-3-hydroxycyclohexanecarboxylic acid (6b), yield 108 mg (78\%). M.p. $>265{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{3}$ (277.3) calculated: $51.98 \% \mathrm{C}, 5.45 \% \mathrm{H}$, 25.26\% N; found: 51.90\% C, 5.52\% H, 25.14\% N.
(1R*,3S*, 4S*)-3-(6-Amino-9H-purin-9-yl)-4-hydroxycyclohexanecarboxylic acid (7b), yield $106 \mathrm{mg}(76 \%)$. M.p. $>265{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{3}$ (277.3) calculated: $51.98 \% \mathrm{C}, 5.45 \% \mathrm{H}$, 25.26\% N; found: 51.69\% C, $5.63 \% \mathrm{H}, 24.98 \% \mathrm{~N}$.

Preparation of Aldehydes 9, 12, 15, and 18

Osmium tetroxide ($10 \mathrm{mg}, 0.04 \mathrm{mmol}$), followed by pulverized sodium chlorate (3 g , 28 mmol) and water (3 ml), was added to a stirred solution of vinyl derivative $\mathbf{2 c}, \mathbf{3 c}$, $\mathbf{4 b}$ or 5b (3 mmol) in 1,4-dioxane (25 ml). The mixture was stirred at room temperature for 3 days. The solids were removed by filtration, washed with 1,4-dioxane and the solvent was evaporated. The residue was partitioned between ethyl acetate (100 ml) and water (15 ml). The aqueous layer was extracted with ethyl acetate (100 ml) and the combined organic extracts were dried over anhydrous sodium sulfate and taken down. A saturated aqueous sodium periodate was added dropwise to a stirred solution of the residue in 1,4-dioxane $(25 \mathrm{ml})$ and the stirring was continued until the starting vinyl derivative disappeared. The reaction was monitored by TLC in ethyl acetate. The insoluble material was filtered off and
washed with 1,4-dioxane and the combined filtrates were evaporated. The residue was partitioned between ethyl acetate (100 ml) and water (20 ml), the organic layer was separated, washed with 10% aqueous sodium thiosulfate (20 ml), dried over sodium sulfate and evaporated. The residue was chromatographed on a silica gel column (180 g) in ethyl acetate.
(1R*,2R*,5 *)-2-[6-(Dibenzoylamino)-9H-purin-9-yl]-5-formylcyclohexyl acetate (9), yield 980 mg (64\%) after crystallization from propan-2-ol. M.p. $173-175{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{5}$ (511.5) calculated: 65.74% C, $4.93 \% \mathrm{H}, 13.69 \% \mathrm{~N}$; found: $65.35 \% \mathrm{C}, 5.11 \% \mathrm{H}, 13.41 \% \mathrm{~N}$.
(1R*,2R*,5S*)-5-Formyl-2-[5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl]cyclohexyl benzoate (12), yield $545 \mathrm{mg}(51 \%)$ of a solid foam. For $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$ (356.4) calculated: 64.03\% C, 5.66\% H, 7.86\% N; found: 63.77\% C, 5.90\% H, 7.59\% N.
(1R*,2R*,4S*)-2-[6-(Dibenzoylamino)-9H-purin-9-yl]-4-formylcyclohexyl acetate (15), yield 955 mg (62\%) after crystallization from propan-2-ol. M.p. 164.5-166.5 ${ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{5}$ (511.5) calculated: 65.74\% C, 4.93\% H, 13.69\% N; found: 65.35\% C, 5.11\% H, 13.41\% N.
(1R*,2R*,4S*)-4-Formyl-2-[5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl]cyclohexyl benzoate (18), yield 524 mg (49\%) of a solid foam. For $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$ (356.4) calculated: $64.03 \% \mathrm{C}$, 5.66\% H, 7.86\% N; found: 63.76\% C, 5.84\% H, 7.57\% N.

Reduction of Aldehydes 9, 12, 15 and 18. General Procedure
Amberlyst A-26 $\left(\mathrm{BH}_{4}^{-}\right.$form, 3 g$)$ was added to a solution of aldehyde $\mathbf{9}, \mathbf{1 2}, \mathbf{1 5}$ or $\mathbf{1 8}$ ($1 \mathbf{m m o l}$) in 1,4-dioxane (20 ml) and the mixture was stirred until the starting compound disappeared. The reaction was monitored by TLC in ethyl acetate. The resin was then filtered off, washed with 1,4-dioxane and the filtrates were evaporated. The residue was chromatographed on a silica gel column (50 g) in ethyl acetate-acetone-ethanol-water (200:30:12:8, compounds 10a and 16a) and/or ethyl acetate (13a and 19a).
(1R*,2R*,5R*)-2-[6-(Dibenzoylamino)-9H-purin-9-yl]-5-(hydroxymethyl)cyclohexyl acetate (10a), yield 390 mg (76%) of a solid foam. For $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{5}$ (513.6) calculated: $65.49 \% \mathrm{C}, 5.30 \% \mathrm{H}$, 13.64\% N; found: 65.18\% C, 5.53\% H, 13.35\% N.
(1R*,2R*,5S*)-5-(Hydroxymethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)cyclohexyl benzoate (13a), yield 262 mg (73%) of a solid foam. For $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$ (358.4) calculated: 63.67\% C, 6.19\% H, 7.82\% N; found: 63.38\% C, 6.40\% H, 7.61\% N. ${ }^{1}$ H NMR: 1.60 m, 1 H (H-3eq); $1.60 \mathrm{tt}, 1 \mathrm{H}, \mathrm{J}(4 \mathrm{ax}, 3 \mathrm{ax})=13.6, \mathrm{~J}(4 \mathrm{ax}, 3 \mathrm{eq})=\mathrm{J}(4 \mathrm{ax}, 5)=4.4, \mathrm{~J}_{\text {gem }}=13.6(\mathrm{H}-4 \mathrm{ax})$; $1.65 \mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}(6 \mathrm{ax}, 1)=11.2, \mathrm{~J}(6 \mathrm{ax}, 5)=5.4, \mathrm{~J}_{\text {gem }}=12.6(\mathrm{H}-6 \mathrm{ax}) ; 1.70 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.1\left(\mathrm{CH}_{3}\right)$; $1.84 \mathrm{dm}, 1 \mathrm{H}$ (H-4eq); $1.98 \mathrm{~m}, 1 \mathrm{H}$ (H-5); $2.05 \mathrm{qd}, 1 \mathrm{H}, \mathrm{J}(3 \mathrm{ax}, 4 \mathrm{ax})=13.0, \mathrm{~J}(3 \mathrm{ax}, 4 \mathrm{eq})=3.8$, $J_{\text {gem }}=13.0(\mathrm{H}-3 \mathrm{ax}) ; 2.20 \mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}(6 \mathrm{eq}, 1)=4.8, \mathrm{~J}(6 \mathrm{eq}, 4 \mathrm{eq})=\mathrm{J}(6 \mathrm{eq}, 5)=2.1, \mathrm{~J}_{\text {gem }}=12.9$ (H-6eq); 3.58 ddd, $1 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}^{\mathrm{a}}, 5\right)=8.2, \mathrm{~J}_{\text {gem }}=10.6\left(\mathrm{CH}^{\mathrm{a}} \mathrm{H}-\mathrm{O}\right) ; 3.64$ ddd, $1 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}^{\mathrm{b}}, 5\right)=7.4$ $\left(\mathrm{CH}^{\mathrm{b}} \mathrm{H}-\mathrm{OH}\right) ; 4.57 \mathrm{brtd}, 1 \mathrm{H}, \mathrm{J}(2,1)=\mathrm{J}(2,3 \mathrm{ax})=11.5, \mathrm{~J}(2,3 \mathrm{eq})=4.3(\mathrm{H}-2) ; 4.60 \mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}\left(\mathrm{CH}_{2}, \mathrm{OH}\right)=5.3\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 5.27 \mathrm{td}, 1 \mathrm{H}(\mathrm{H}-1) ; 7.48 \mathrm{t}, 2 \mathrm{H}, 7.63 \mathrm{t}, 1 \mathrm{H}$ and $7.83 \mathrm{~d}, 2 \mathrm{H}$ (H-arom.); $7.80 \mathrm{brq}, 1 \mathrm{H}$ (H-6'); $11.15 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$.
(1R*,2R*,4R*)-2-[6-(Dibenzoylamino)-9H-purin-9-yl]-4-(hydroxymethyl)cyclohexyl acetate (16a), yield 400 mg (78%) of a solid foam. For $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{5}$ (513.6) calculated: $65.49 \% \mathrm{C}, 5.30 \% \mathrm{H}$, $13.64 \% \mathrm{~N}$; found: $65.25 \% \mathrm{C}, 5.41 \% \mathrm{H}, 13.49 \% \mathrm{~N} .{ }^{1} \mathrm{H}$ NMR: 1.21 td, $1 \mathrm{H}, \mathrm{J}(5 \mathrm{ax}, 4)=13.4$, $\mathrm{J}(5 \mathrm{ax}, 6 \mathrm{ax})=13.8, \mathrm{~J}(5 \mathrm{ax}, 6 \mathrm{eq})=3.8, \mathrm{~J}_{\text {gem }}=13.4(\mathrm{H}-5 \mathrm{ax}) ; 1.51 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{COO}\right) ; 1.56 \mathrm{tdd}, 1 \mathrm{H}$, $\mathrm{J}(6 \mathrm{ax}, 1)=11.0, \mathrm{~J}(6 \mathrm{ax}, 5 \mathrm{eq})=3.4, \mathrm{~J}_{\text {gem }}=13.8(\mathrm{H}-6 \mathrm{ax}) ; 1.72 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-4) ; 1.83 \mathrm{dq}, 1 \mathrm{H}$ $(\mathrm{H}-5 \mathrm{eq}) ; 2.06 \mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}(6 \mathrm{eq}, 1)=4.8, \mathrm{~J}(6 \mathrm{eq}, 5 \mathrm{eq})=2.8(\mathrm{H}-6 \mathrm{eq}) ; 2.12 \mathrm{~m}$ and $2.14 \mathrm{~m}, 2 \mathrm{H}(2 \times$ $\mathrm{H}-3) ; 3.30 \mathrm{brdt}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}^{\mathrm{a}}, 4\right)=6.0, \mathrm{~J}_{\mathrm{gem}}=11.6\left(\mathrm{CH}^{\mathrm{a}} \mathrm{H}-\mathrm{O}\right) ; 3.34 \mathrm{brdt}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}^{\mathrm{b}}, 4\right)=6.4$ $\left(\mathrm{CH}^{\mathrm{b}} \mathrm{H}-\mathrm{OH}\right) ; 4.66 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-2) ; 4.62 \mathrm{t}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}_{2}, \mathrm{OH}\right)=6.4\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 5.21 \mathrm{td}, \mathrm{J}(1,2)=$
$\mathrm{J}(1,6 \mathrm{ax})=11.0, \mathrm{~J}(1,6 \mathrm{eq})=4.8(\mathrm{H}-1) ; 7.44 \mathrm{t}, 4 \mathrm{H}, 7.58 \mathrm{t}, 2 \mathrm{H}$ and $7.75 \mathrm{~d}, 4 \mathrm{H}$ (H-arom.); 8.68 s and $8.71 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-8^{\prime}\right)$.
(1R*,2R*,4S*)-4-(H ydroxymethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)cyclohexyl benzoate (19a), yield 276 mg (77\%) of a solid foam. For $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$ (358.4) calculated: 63.67% C, 6.19% H, 7.82% N; found: 63.46% C, $6.36 \% \mathrm{H}, 7.63 \%$ N. ${ }^{1}$ H NMR: $1.65 \mathrm{~m}, 1 \mathrm{H}$ (H-6ax); $1.65 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5 \mathrm{ax}) ; 1.71 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.1\left(\mathrm{CH}_{3}\right) ; 1.80 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5 \mathrm{eq}) ; 1.85 \mathrm{ddt}, 1 \mathrm{H}$, $\mathrm{J}(3 \mathrm{eq}, 2)=4.6, \mathrm{~J}(3 \mathrm{eq}, 4)=2.2, \mathrm{~J}_{\text {gem }}=12.8(\mathrm{H}-3 \mathrm{eq}) ; 1.97 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-4) ; 2.00 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6 \mathrm{eq})$; $2.11 \mathrm{td}, \mathrm{J}(3 \mathrm{ax}, 4)=5.3, \mathrm{~J}_{\text {gem }}=13.0(\mathrm{H}-3 \mathrm{ax}) ; 3.53 \mathrm{dd}, 2 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}_{2}, 4\right)=7.6, \mathrm{~J}\left(\mathrm{CH}_{2}, \mathrm{OH}\right)=5.1$ $\left(\mathrm{CH}_{2}\right) ; 4.68 \mathrm{t}, 1 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 4.76 \mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}(2,1)=10.1, \mathrm{~J}(2,3 \mathrm{ax})=13.3, \mathrm{~J}(2,3 \mathrm{eq})=4.6(\mathrm{H}-2)$; $5.20 \mathrm{td}, 1 \mathrm{H}, \mathrm{J}(1,6 \mathrm{ax})=10.5, \mathrm{~J}(1,6 \mathrm{eq})=5.0(\mathrm{H}-1) ; 7.48 \mathrm{t}, 2 \mathrm{H}, 7.63 \mathrm{t}, 1 \mathrm{H}$ and $7.84 \mathrm{~d}, 2 \mathrm{H}$ (H-arom.); 7.80 brq, 1 H (H-6'); $11.17 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$.

Deprotection of Compounds 10a and 16a

A solution of dibenzoate 10a or 16a ($207 \mathrm{mg}, 0.5 \mathrm{mmol}$) in methanolic ammonia (3 ml) was set aside at room temperature for 3 days. The crystalline compound was filtered off and washed with methanol and ether.
(1R*,2R*,5R*)-2-(6-Amino-9H-purin-9-yl)-5-(hydroxymethyl)cyclohexanol (10b), yield 105 mg (80\%). M.p. $215-217{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$ (263.3) calculated: $54.74 \% \mathrm{C}, 6.51 \% \mathrm{H}, 26.60 \% \mathrm{~N}$; found: 54.74% C, $6.64 \% \mathrm{H}, 26.44 \%$ N. ${ }^{1} \mathrm{H}$ NMR: $1.00-1.10 \mathrm{~m}, 2 \mathrm{H}$ (H-3ax, H-6ax); 1.61 m , $1 \mathrm{H}, \Sigma \mathrm{J} \approx 43$ (H-5); 1.78 dpent, $1 \mathrm{H}, \mathrm{J} \approx 2.7$, J gem $=12.8(\mathrm{H}-4 \mathrm{eq}) ; 1.91 \mathrm{dq}, 1 \mathrm{H}, \mathrm{J}=3.5, \mathrm{~J}_{\text {gem }}=$ 13.0 (H-3eq); $2.03 \mathrm{dm}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=13.0$ (H-6eq); $2.06 \mathrm{qd}, 1 \mathrm{H}, \mathrm{J}(3 \mathrm{ax}, 4 \mathrm{eq})=3.8$, J(3ax,4ax) \approx 13.3 (H-3ax); $3.27 \mathrm{brdt}, 1 \mathrm{H}$ and $3.30 \mathrm{brdt}, 1 \mathrm{H}, \mathrm{J}=6.0, \mathrm{~J}$ gem $=11.0\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 4.04 \mathrm{tt}, 1 \mathrm{H}$, $\mathrm{J}(1,6 \mathrm{eq})=4.6, \mathrm{~J}(1,2)=\mathrm{J}(1,6 \mathrm{ax})=10.0(\mathrm{H}-1) ; 4.07 \mathrm{td}, 1 \mathrm{H}, \mathrm{J}(2,3 \mathrm{eq})=4.2, \mathrm{~J}(2,3 \mathrm{ax})=12.0(\mathrm{H}-2)$; $4.52 \mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.4\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 4.84 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}(\mathrm{OH}, 1)=5.4(1-\mathrm{OH}) ; 7.11 \mathrm{brs}, 2 \mathrm{H}\left(\mathrm{NH}_{2}\right) ; 8.10 \mathrm{~s}$, 1 H and $8.14 \mathrm{~s}, 1 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-8^{\prime}\right)$.
(1R*,2R*,4R*)-2-(6-Amino-9H-purin-9-yl)-4-(hydroxymethyl)cyclohexanol (16b), yield 101 mg (77\%). M.p. $157-158.5^{\circ} \mathrm{C}$. For $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$ (358.4) calculated: $63.67 \% \mathrm{C}, 6.19 \% \mathrm{H}, 7.82 \% \mathrm{~N}$; found: 63.39% C, $6.40 \% \mathrm{H}, 7.59 \% \mathrm{~N}$.

Deprotection of Compounds 13a and 19a

Compound 13a or 19a ($179 \mathrm{mg}, 0.5 \mathrm{mmol}$) was treated with methanolic sodium methoxide using the same conditions as for compounds $\mathbf{4 b}$ and $\mathbf{5 b}$.

1-[(1R*,2R*,4S*)-2-Hydroxy-4-(hydroxymethyl)cyclohexyl]-5-methylpyrimidine-2,4(1H,3H)-dione (13b), yield 121 mg (89\%). M.p. $197-199{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (272.3) calculated: 52.93\% C, 7.40\% H, 10.29\% N; found: 52.96\% C, 7.61\% H, 10.17\% N.

1-[(1R*,2R*,5S*)-2-Hydroxy-5-(hydroxymethyl)cyclohexyl]-5-methylpyrimidine-2,4(1H,3H)-dione (19b), yield 116 mg (85\%). M.p. $220-223{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (272.3) calculated: 52.93\% C, 7.40\% H, 10.29\% N; found: 53.22\% C, 7.47\% H, 10.36\% N.
[(1R*,3S*,4S*)-3-(M esyloxy)-4-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-
1(2H)-yl)cyclohexyl]methyl M esylate (20)
A solution of 13b (204 mg, 0.75 mmol) in pyridine (4 ml) was evaporated and the solution of the residue in pyridine (3 ml) was treated with methanesulfonyl chloride ($0.4 \mathrm{ml}, 4 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was set aside at room temperature for 3 h . Water (0.2 ml) was then added and, after 15 min , pyridine was evaporated. The residue was partitioned between
ethyl acetate (200 ml) and water (10 ml). The insoluble portion was filtered off and crystallized from ethanol; yield 35 mg (15\%) of 21. The organic phase was separated, washed with 5% hydrochloric acid, water and 10% aqueous sodium hydrogencarbonate (10 ml each), then dried over anhydrous sodium sulfate, and the solvent was evaporated. Crystallization of the residue from acetone-ether afforded 247 mg (80%) of dimesylate 20, m.p. 138-141 ${ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$ (410.5) calculated: $40.97 \% \mathrm{C}, 5.40 \% \mathrm{H}, 6.82 \% \mathrm{~N}, 15.62 \% \mathrm{~S}$; found: $40.72 \% \mathrm{C}, 5.51 \% \mathrm{H}, 6.60 \% \mathrm{~N}, 15.43 \% \mathrm{~S} .{ }^{1} \mathrm{H}$ NMR: $1.68 \mathrm{tt}, 1 \mathrm{H}, \mathrm{J}(6 \mathrm{ax}, 1)=\mathrm{J}(6 \mathrm{ax}, 5 \mathrm{eq})=4.5$, $J(6 \mathrm{ax}, 5 \mathrm{ax})=\mathrm{J}_{\text {gem }}=13.4(\mathrm{H}-6 \mathrm{ax}) ; 1.76 \mathrm{~m}, 3 \mathrm{H}(2 \times \mathrm{H}-5, \mathrm{H}-6 \mathrm{eq}) ; 1.78 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 1.87$ ddd, $1 \mathrm{H}, \mathrm{J}(2 \mathrm{ax}, 1)=5.4, \mathrm{~J}(2 \mathrm{ax}, 3)=11.0, \mathrm{~J}_{\text {gem }}=13.2(\mathrm{H}-2 \mathrm{ax}) ; 2.27 \mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}(2 \mathrm{eq}, 1)=\mathrm{J}(2 \mathrm{eq}, 6 \mathrm{eq})=$ 2.1, J $(2 \mathrm{eq}, 3)=4.8(\mathrm{H}-2 \mathrm{eq}) ; 2.29 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-1) ; 3.04 \mathrm{~s}, 3 \mathrm{H}$ and $3.24 \mathrm{~s}, 3 \mathrm{H}\left(2 \times \mathrm{CH}_{3} \mathrm{SO}_{2}\right)$; $4.36 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}^{\mathrm{a}}, 1\right)=7.2, \mathrm{~J}_{\text {gem }}=10.2\left(\mathrm{CH}^{\mathrm{a}} \mathrm{H}-\mathrm{O}\right) ; 4.42 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}^{\mathrm{b}}, 1\right)=8.7\left(\mathrm{CH}^{\mathrm{b}} \mathrm{H}-\mathrm{O}\right)$; 4.46 brtd, $1 \mathrm{H}, \mathrm{J}(4,3)=\mathrm{J}(4,5 \mathrm{ax})=10.8, \mathrm{~J}(4,5 \mathrm{eq})=4.4(\mathrm{H}-4) ; 4.93 \mathrm{brtd}, 1 \mathrm{H}(\mathrm{H}-3) ; 7.81 \mathrm{~s}, 1 \mathrm{H}$ (H-6'); $11.24 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$.
[(5aR*,8S*,9aS*)-3-M ethyl-2-oxo-5a,6,7,8,9,9a-hexahydro-2H-pyrimido[2,1-b]-
[1,3]benzoxazol-8-yl]methyl mesylate (21)
DBU ($0.2 \mathrm{ml}, 1.3 \mathrm{mmol}$) was added to a solution of dimesylate $\mathbf{2 0}$ ($205 \mathrm{mg}, 0.5 \mathrm{mmol}$) in acetonitrile and the solution was set aside at room temperature for 1 h . The mixture was then concentrated and adsorbed on silica gel. Chromatography on a silica gel column (20 g) in ethyl acetate-acetone-ethanol-water (15:3:4:3) gave 108 mg (69%) of compound 21, m.p. $155-156{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (314.4) calculated: 49.67\% C, 5.77\% H, 8.91\% N, 10.20\% S; found: 49.51% C, 5.80% H, 8.82% N, 10.08\% S. ${ }^{1}$ H NMR: 1.04 dddd, 1 H, J(7ax, 6ax) = 12.6, $\mathrm{J}(7 \mathrm{ax}, 6 \mathrm{eq})=3.8, \mathrm{~J}(7 \mathrm{ax}, 8)=10.2, \mathrm{~J}_{\text {gem }}=13.6(\mathrm{H}-7 \mathrm{ax}) ; 1.31 \mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}(9 \mathrm{ax}, 8)=10.9, \mathrm{~J}(9 \mathrm{ax}, 9 \mathrm{a})=$ $9.2, \mathrm{~J}_{\text {gem }}=13.4(\mathrm{H}-9 \mathrm{ax}) ; 1.60 \mathrm{brdq}, 1 \mathrm{H}, \mathrm{J}(7 \mathrm{eq}, 6 \mathrm{eq})=\mathrm{J}(7 \mathrm{eq}, 8)=4.4, \mathrm{~J}(7 \mathrm{eq}, 9 \mathrm{eq})=1.5(\mathrm{H}-7 \mathrm{eq})$; $1.80 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.2\left(\mathrm{CH}_{3}\right) ; 1.87 \mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}(6 \mathrm{ax}, 7 \mathrm{eq})=4.6, \mathrm{~J}_{\text {gem }}=15.4(\mathrm{H}-6 \mathrm{ax}) ; 1.90 \mathrm{~m}, 1 \mathrm{H}$ (H-8); 2.12 dddd, $1 \mathrm{H}, \mathrm{J}(9 \mathrm{eq}, 8)=4.0$, J $(9 \mathrm{eq}, 9 \mathrm{a})=6.3(\mathrm{H}-9 \mathrm{eq}) ; 2.29 \mathrm{dq}, 1 \mathrm{H}, \mathrm{J}(6 \mathrm{eq}, 7 \mathrm{eq})=4.0$ (H-6eq); $3.17 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right) ; 4.05 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}_{2}, 8\right)=6.7\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 4.48 \mathrm{brdt}, 1 \mathrm{H}, \mathrm{J}(5 \mathrm{a}, 6 \mathrm{eq})=$ $4.0, \mathrm{~J}(5 \mathrm{a}, 6 \mathrm{ax})=4.2, \mathrm{~J}(5 \mathrm{a}, 9 \mathrm{a})=7.0(\mathrm{H}-5 \mathrm{a}) ; 5.08 \mathrm{brdt}, 1 \mathrm{H}(\mathrm{H}-9 \mathrm{a}) ; 7.74 \mathrm{brq}, 1 \mathrm{H}(\mathrm{H}-4)$.

5-M ethyl-1-[(1R*,4S*,5R*)-6-oxabicyclo[3.2.1]oct-4-yl]pyrimidine-2,4(1H,3H)-dione (23)

A solution of compound $\mathbf{2 1}(94 \mathrm{mg}, 0.3 \mathrm{mmol})$ in saturated methanolic lithium hydroxide (1.5 ml) was heated at $60^{\circ} \mathrm{C}$ for 2 h and, after cooling, neutralized with Dowex $50\left(\mathrm{H}^{+}\right)$. The resin was filtered off, washed with methanol and the combined filtrates were evaporated. Crystallization of the residue from water afforded 55 mg (78%) of oxabicyclooctylthymine 23, m.p. 239-242 ${ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ (236.3) calculated: $61.00 \% \mathrm{C}, 6.83 \% \mathrm{H}, 11.86 \% \mathrm{~N}$; found: $60.83 \% \mathrm{C}, 6.98 \% \mathrm{H}, 11.77 \% \mathrm{~N} .{ }^{1} \mathrm{H}$ NMR: 1.58 tddd, $1 \mathrm{H}, \mathrm{J}\left(2^{\prime} \mathrm{ax}, 1^{\prime}\right)=2.2, \mathrm{~J}\left(2^{\prime} \mathrm{ax}, 3^{\prime} \mathrm{ax}\right)=$ 12.6, J $\left(2^{\prime} \mathrm{ax}, 3^{\prime} \mathrm{eq}\right)=5.4, \mathrm{~J}\left(2^{\prime} \mathrm{ax}, 7^{\prime} \mathrm{exo}\right)=1.5, \mathrm{~J}_{\text {gem }}=12.6\left(\mathrm{H}-2^{\prime} \mathrm{ax}\right) ; 1.63 \mathrm{brddt}, 1 \mathrm{H}, \mathrm{J}\left(2^{\prime} \mathrm{eq}, 1^{\prime}\right)=$ $3.2, \mathrm{~J}\left(2^{\prime} \mathrm{eq}, 3^{\prime} \mathrm{ax}\right)=6.2, \mathrm{~J}\left(2^{\prime} \mathrm{eq}, 3^{\prime} \mathrm{eq}\right)=1.8\left(\mathrm{H}-2^{\prime} \mathrm{eq}\right) ; 1.71 \mathrm{brdt}, 1 \mathrm{H}, \mathrm{J}\left(3^{\prime} \mathrm{eq}, 5^{\prime}\right)=1.7, \mathrm{~J}_{\text {gem }} 12.6$ $\left(\mathrm{H}-3^{\prime} \mathrm{eq}\right) ; 1.76 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.2\left(\mathrm{CH}_{3}\right) ; 1.76 \mathrm{brdt}, 1 \mathrm{H}, \mathrm{J}\left(8^{\prime} \mathrm{eq}, 1^{\prime}\right)=\mathrm{J}\left(8^{\prime} \mathrm{eq}, 5^{\prime}\right)=1.5, \mathrm{~J}_{\mathrm{gem}}=11.6$ (H-8'eq); 1.81 brtd, $1 \mathrm{H}, \mathrm{J}\left(3^{\prime} \mathrm{ax}, 4^{\prime}\right)=11.7$ (H-3’ax); 1.89 dddd, $1 \mathrm{H}, \mathrm{J}\left(8^{\prime} \mathrm{ax}, 1^{\prime}\right)=4.6$, J(8'ax,2'ax) = 2.3, J(8'ax, 5') = 6.6 (H-8'ax); $2.40 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}-1^{\prime}\right) ; 3.74 \mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}\left(7^{\prime} \mathrm{exo}, 1^{\prime}\right)=$ $4.4, \mathrm{~J}_{\text {gem }}=7.8$ (H-7'exo); $3.87 \mathrm{brd}, 1 \mathrm{H}, \mathrm{J}\left(7^{\prime}\right.$ endo, $\left.\mathrm{l}^{\prime}\right)=1.0$ (H-7'endo); $4.20 \mathrm{dt}, 1 \mathrm{H}\left(\mathrm{H}-5^{\prime}\right)$; $4.34 \mathrm{brdd}, 1 \mathrm{H}, \mathrm{J}\left(4^{\prime}, 3^{\prime} \mathrm{eq}\right)=5.6, \mathrm{~J}\left(4^{\prime}, 5^{\prime}\right)=0.5\left(\mathrm{H}-4^{\prime}\right) ; 7.55 \mathrm{brq}, 1 \mathrm{H}(\mathrm{H}-6) ; 11.21 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$.
(1迤, $\left.2 \mathrm{R}^{*}, 4 \mathrm{~S}^{*}\right)$-4-Vinylcyclohexane-1,2-diyl Dibenzoate (24b)
A solution of epoxide $\mathbf{1}(1.3 \mathrm{ml}, 10 \mathrm{mmol})$, DBU ($1.6 \mathrm{ml}, 10 \mathrm{mmol}$) and water (0.8 ml) in dimethylformamide (15 ml) was heated at $130{ }^{\circ} \mathrm{C}$ for 6 h . After cooling, the mixture was neutralized with hydrochloric acid and the solvent was evaporated. A solution of the residue in water (5 ml) was acidified with concentrated hydrochloric acid and extracted with ethyl acetate ($5 \times 15 \mathrm{ml}$). The combined extracts were evaporated, the residue was codistilled with pyridine, dissolved in pyridine (15 ml) and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Benzoyl chloride ($2.3 \mathrm{ml}, 20 \mathrm{mmol}$) was added to the solution and the mixture was set aside at room temperature for 4 h . Water (0.5 ml) was then added and, after 15 min , pyridine was evaporated. The residue was partitioned between ethyl acetate (40 ml) and water (20 ml). The organic layer was separated, washed with water, 5% hydrochloric acid, water, aqueous 10% sodium $\mathrm{NaHCO}_{3}(3 \times)$ and water (20 ml each), dried over anhydrous sodium sulfate, and the solvent was evaporated. Chromatography of the residue on a silica gel column (100 g) with toluene-ethyl acetate (98:2) gave $1.40 \mathrm{~g}\left(40 \%\right.$) of dibenzoate 24b. For $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4}$ (350.4) calculated: $75.41 \% \mathrm{C}, 6.33 \% \mathrm{H}$; found: $75,36 \% \mathrm{C}, 6.39 \%$ H. ${ }^{1} \mathrm{H}$ NMR: 1.63 dddd, 1 H, J $(5 \mathrm{ax}, 4)=$ $3.8, \mathrm{~J}(5 \mathrm{ax}, 6 \mathrm{a})=9.5, \mathrm{~J}(5 \mathrm{ax}, 6 \mathrm{~b})=8.2, \mathrm{~J}_{\text {gem }}=13.6(\mathrm{H}-5 \mathrm{ax}) ; 1.75 \mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}(5 \mathrm{eq}, 4)=7.0$, $\mathrm{J}(5 \mathrm{eq}, 6 \mathrm{a})=4.2, \mathrm{~J}(5 \mathrm{eq}, 6 \mathrm{~b})=3.8(\mathrm{H}-5 \mathrm{eq}) ; 1.88 \mathrm{brdtd}, 1 \mathrm{H}, \mathrm{J}(6 \mathrm{~b}, 1)=6.5, \mathrm{~J}_{\text {gem }}=13.8(\mathrm{H}-6 \mathrm{~b}) ;$ $1.96 \mathrm{~m}, 2 \mathrm{H}(2 \times \mathrm{H}-3) ; 2.03 \mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}(6 \mathrm{a}, 1)=3.5(\mathrm{H}-6 \mathrm{a}) ; 2.56 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-4) ; 5.08 \mathrm{dt}, 1 \mathrm{H}$, $\mathrm{J}(\mathrm{CH}, 4)=J_{\text {gem }}=1.7, \mathrm{~J}\left(\mathrm{CH}, \mathrm{CH}_{\text {cis }}\right)=10.6$ and $5.16 \mathrm{dt}, 1 \mathrm{H}, \mathrm{J}(\mathrm{CH}, 4)=J_{\text {gem }}=1.7, \mathrm{~J}\left(\mathrm{CH}, \mathrm{CH}_{\text {trans }}\right)=$ $17.3\left(\mathrm{CH}_{2}=\right) ; 5.19 \mathrm{td}, 1 \mathrm{H}, \mathrm{J}(1,2)=6.0(\mathrm{H}-1) ; 5.29 \mathrm{td}, 1 \mathrm{H}, \mathrm{J}(2,3 \mathrm{a})=3.9, \mathrm{~J}(2,3 \mathrm{~b})=6.0(\mathrm{H}-2)$; 5.92 ddd, $1 \mathrm{H}, \mathrm{J}(\mathrm{CH}, 4)=5.7(\mathrm{CH}=) ; 7.52 \mathrm{~m}, 4 \mathrm{H}, 7.65 \mathrm{~m}, 2 \mathrm{H}$ and $7.97 \mathrm{~m}, 4 \mathrm{H}$ (H -arom.).

The authors are indebted to Ms J. Sklenářová for excellent technical assistance, and to the staff of the Analytical Laboratory of this Institute for elemental analyses. This study is a part of the research project Z4 055905 supported by the Grant Agency of the Czech Republic (grant No. 203/02/0035).

REFERENCES

1. a) Verheggen I., Van Aerschot A., Toppet S., Snoeck R., Janssen G., Balzarini J., De Clercq E., Herdewijn P.: J. Med. Chem. 1993, 36, 2033; b) Verheggen I., Van Aerschot A., Van Meervelt L., Rozenski J., Wiebe L., Snoeck R., Andrei G., Balzarini J., Claes P., De Clercq E., Herdewijn P.: J. Med. Chem. 1995, 38, 826.
2. a) Pérez-Pérez M. J., Rozenski J., Busson R., Herdewijn P.: J. Org. Chem. 1995, 60, 1531; b) Konkel M. J., Vince R.: Nucleosides Nucleotides 1995, 14, 2061; c) Konkel M. J., Vince R.: Tetrahedron 1996, 52, 799, 8969; d) Katagiri N., Ito Y., Shiraishi T., Maruyama T., Sato Y., Kaneko C.: Nucleosides Nucleotides 1996, 15, 631; e) Mikhailov S. N., Blaton N., Rozenski J., Balzarini J., De Clercq E., Herdewijn P.: Nucleosides Nucleotides 1996, 15, 867; f) Maurinsh Y., Schraml J., De Winter H., Blaton N., Peeters O., Lescrinier E., Rozenski J., Van Aershot A., De Clercq E., Busson R., Herdewijn P.: J. Org. Chem. 1997, 62, 2861; g) Wang J., Busson R., Blaton N., Rozenski J., Herdewijn P.: J. Org. Chem. 1998, 63, 3051; h) Maurinsh Y., Rosemeyer H., Esnoef R., Medvedovici A., Wang J., Ceulemans G., Lescrinier E., Hendrix C., Busson R., Saudra P., Seela F., Van Aerschot A., Herdewijn P.: Chem. Eur. J. 1999, 5, 2139; i) Wang J., Herdewijn P.: Nucleosides Nucleotides 1999, 18, 591, 593; j) Wang J., Herdewijn P.: J. Org. Chem. 1999, 64, 7820; k) Wang J., Froeyen M., Hendrix C., Andrei G., Snoeck R.,

De Clercq E., Herdewijn P.: J. Med. Chem. 2000, 43, 736; 1) Wang J., Verbeure B., Luyten I., Lescrinier E., Froeyen M., Hendrix C., Rosemeyer H., Seela F., Van Aershot A., Herdewijn P.: J. Am. Chem. Soc. 2000, 122, 8595; m) Vina D., Santana L., Uriarte E.: Nucleosides Nucleotides Nucleic Acids 2001, 20, 1363; n) Gauvry N., Huet F.: J. Org. Chem. 2001, 66, 583; o) Herdewijn P., De Clercq E.: Bioorg. Med. Chem. Lett. 2001, 11, 1591; p) Barral K., Halfon P., Pepe G., Camplo M.: Tetrahedron Lett. 2002, 43, 81.
3. a) Wang J., Verbeure B., Luyten I., Lescrinier E., Froeyen M., Hendrix C., Rosemeyer H., Seela F., Van Aerschot A., Herdewijn P.: J. Am. Chem. Soc. 2000, 122, 8595; b) Wang J., Verbeure B., Luyten I., Froeyen M., Hendrix C., Rosemeyer H., Seela F., Van Aerschot A., Herdewijn P.: Nucleosides Nucleotides Nucleic Acids 2001, 20, 785.
4. a) Hřebabecký H., Masojídková M., Holý A.: Collect. Czech. Chem. Commun. 1998, 63, 2044; b) Hřebabecký H., Holý A.: Collect. Czech. Chem. Commun. 1999, 64, 1485; c) Hřebabecký H., Holý A.: Collect. Czech. Chem. Commun. 2000, 65, 395; d) Hřebabecký H., Holý A.: Collect. Czech. Chem. Commun. 2001, 66, 785.
5. Arango J. H., Geer A., Rodriguez J., Young P. E., Scheiner P.: Nucleosides Nucleotides 1993, 12, 773.
6. Scannell J. P., Allen F. W.: J. Org. Chem. 1960, 25, 2143.
7. Sano M.: Chem. Pharm. Bull. 1962, 10, 320.
8. Leonard N. J., Deyrup J. A.: J. Am. Chem. Soc. 1962, 84, 2148.
9. Carlsen P. H., Katsuki T., Martin V. S., Sharpless K. B.: J. Org. Chem. 1981, 46, 3936.
10. a) Chini M., Crotti P., Flippin L. A., Macchia F.: J. Org. Chem. 1991, 56, 7043; b) Chini M., Crotti P., Flippin L. A., Macchia F., Pineschi M.: J. Org. Chem. 1992, 57, 1405.

